BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28335857)

  • 1. Modeling Syndromic Congenital Heart Defects in Zebrafish.
    Grant MG; Patterson VL; Grimes DT; Burdine RD
    Curr Top Dev Biol; 2017; 124():1-40. PubMed ID: 28335857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish models in cardiac development and congenital heart birth defects.
    Tu S; Chi NC
    Differentiation; 2012 Jul; 84(1):4-16. PubMed ID: 22704690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects.
    Shrestha R; Lieberth J; Tillman S; Natalizio J; Bloomekatz J
    Adv Exp Med Biol; 2020; 1236():189-223. PubMed ID: 32304074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges.
    Yang D; Jian Z; Tang C; Chen Z; Zhou Z; Zheng L; Peng X
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac Development and Animal Models of Congenital Heart Defects.
    Kelly RG
    Adv Exp Med Biol; 2024; 1441():77-85. PubMed ID: 38884705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid.
    Sarmah S; Marrs JA
    Dev Dyn; 2013 Oct; 242(10):1184-201. PubMed ID: 23832875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.
    Sarmah S; Muralidharan P; Marrs JA
    PLoS One; 2016; 11(8):e0161205. PubMed ID: 27556898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish as a model of cardiac disease.
    Wilkinson RN; Jopling C; van Eeden FJ
    Prog Mol Biol Transl Sci; 2014; 124():65-91. PubMed ID: 24751427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heart malformation is an early response to TCDD in embryonic zebrafish.
    Antkiewicz DS; Burns CG; Carney SA; Peterson RE; Heideman W
    Toxicol Sci; 2005 Apr; 84(2):368-77. PubMed ID: 15635151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.
    Calcagni G; Unolt M; Digilio MC; Baban A; Versacci P; Tartaglia M; Baldini A; Marino B
    Expert Rev Mol Diagn; 2017 Sep; 17(9):861-870. PubMed ID: 28745539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of cardiac morphogenesis.
    Schleich JM; Abdulla T; Summers R; Houyel L
    Arch Cardiovasc Dis; 2013 Nov; 106(11):612-23. PubMed ID: 24138816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Visualization of Developmental Toxicity of 2,4,6-Trinitrotoluene in Zebrafish Embryogenesis Using Light-Sheet Microscopy.
    Eum J; Kwak J; Kim HJ; Ki S; Lee K; Raslan AA; Park OK; Chowdhury MA; Her S; Kee Y; Kwon SH; Hwang BJ
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27869673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart.
    Cavanaugh AM; Huang J; Chen JN
    Dev Biol; 2015 Aug; 404(2):103-12. PubMed ID: 26086691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.
    Sarmah S; Marrs JA
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural crest and cardiovascular development: a 20-year perspective.
    Hutson MR; Kirby ML
    Birth Defects Res C Embryo Today; 2003 Feb; 69(1):2-13. PubMed ID: 12768653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atrial natriuretic factor in the developing heart: a signpost for cardiac morphogenesis.
    Bruneau BG
    Can J Physiol Pharmacol; 2011 Aug; 89(8):533-7. PubMed ID: 21806510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development.
    Zhang Q; He X; Chen L; Zhang C; Gao X; Yang Z; Liu G
    J Pathol; 2012 Nov; 228(3):416-28. PubMed ID: 22821713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics in zebrafish, mice, and humans to dissect congenital heart disease: insights in the role of VEGF.
    Lambrechts D; Carmeliet P
    Curr Top Dev Biol; 2004; 62():189-224. PubMed ID: 15522743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scaRNAs regulate splicing and vertebrate heart development.
    Patil P; Kibiryeva N; Uechi T; Marshall J; O'Brien JE; Artman M; Kenmochi N; Bittel DC
    Biochim Biophys Acta; 2015 Aug; 1852(8):1619-29. PubMed ID: 25916634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos.
    Liang J; Gui Y; Wang W; Gao S; Li J; Song H
    Birth Defects Res A Clin Mol Teratol; 2010 Jun; 88(6):480-6. PubMed ID: 20306498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.