BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 28336060)

  • 1. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments of genetically encoded optical sensors for cell biology.
    Bolbat A; Schultz C
    Biol Cell; 2017 Jan; 109(1):1-23. PubMed ID: 27628952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering genetically encoded FRET sensors.
    Lindenburg L; Merkx M
    Sensors (Basel); 2014 Jul; 14(7):11691-713. PubMed ID: 24991940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose.
    Serebrovskaya EO; Podvalnaya NM; Dudenkova VV; Efremova AS; Gurskaya NG; Gorbachev DA; Luzhin AV; Kantidze OL; Zagaynova EV; Shram SI; Lukyanov KA
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor.
    Kost LA; Nikitin ES; Ivanova VO; Sung U; Putintseva EV; Chudakov DM; Balaban PM; Lukyanov KA; Bogdanov AM
    PLoS One; 2017; 12(9):e0184225. PubMed ID: 28863184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded far-red fluorescent sensors for caspase-3 activity.
    Zlobovskaya OA; Sergeeva TF; Shirmanova MV; Dudenkova VV; Sharonov GV; Zagaynova EV; Lukyanov KA
    Biotechniques; 2016 Feb; 60(2):62-8. PubMed ID: 26842350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.
    Hochreiter B; Garcia AP; Schmid JA
    Sensors (Basel); 2015 Oct; 15(10):26281-314. PubMed ID: 26501285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment.
    Mitchell JA; Zhang WH; Herde MK; Henneberger C; Janovjak H; O'Mara ML; Jackson CJ
    Methods Mol Biol; 2017; 1596():89-99. PubMed ID: 28293882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically Encoded Biosensors Based on Fluorescent Proteins.
    Kim H; Ju J; Lee HN; Chun H; Seong J
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species.
    Höfig H; Cerminara M; Ritter I; Schöne A; Pohl M; Steffen V; Walter J; Vergara Dal Pont I; Katranidis A; Fitter J
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
    Mohsin M; Ahmad A; Iqbal M
    Biotechnol Lett; 2015 Oct; 37(10):1919-28. PubMed ID: 26184603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level.
    Höfig H; Otten J; Steffen V; Pohl M; Boersma AJ; Fitter J
    ACS Sens; 2018 Aug; 3(8):1462-1470. PubMed ID: 29979038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors.
    Clifton BE; Whitfield JH; Sanchez-Romero I; Herde MK; Henneberger C; Janovjak H; Jackson CJ
    Methods Mol Biol; 2017; 1596():71-87. PubMed ID: 28293881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP.
    Trull KJ; Miller P; Tat K; Varney SA; Conley JM; Tantama M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of green fluorescent proteins and their variants in development of FRET-based sensors.
    Soleja N; Manzoor O; Khan I; Ahmad A; Mohsin M
    J Biosci; 2018 Sep; 43(4):763-784. PubMed ID: 30207321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors.
    Zou Y; Wang A; Shi M; Chen X; Liu R; Li T; Zhang C; Zhang Z; Zhu L; Ju Z; Loscalzo J; Yang Y; Zhao Y
    Nat Protoc; 2018 Oct; 13(10):2362-2386. PubMed ID: 30258175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.