These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2833607)

  • 21. Synthetic peptide antigens elicit monoclonal and polyclonal antibodies to cytochrome P450 IA2.
    Myers MJ; Liu G; Miller H; Gelboin HV; Robinson RC; Friedman FK
    Biochem Biophys Res Commun; 1990 May; 169(1):171-6. PubMed ID: 2350341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alkaline nuclease activity in cells infected with herpes simplex virus type 1 (HSV-1) and HSV-1 temperature-sensitive mutants.
    Hafner J; Mohammad F; Farber FE
    Biochim Biophys Acta; 1987 Oct; 910(1):85-8. PubMed ID: 2820499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A DNA topoisomerase activity copurifies with the DNA polymerase induced by herpes simplex virus.
    Biswal N; Feldan P; Levy CC
    Biochim Biophys Acta; 1983 Sep; 740(4):379-89. PubMed ID: 6309234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A monoclonal antibody that neutralizes Epstein-Barr virus DNA polymerase activity.
    Tsai CH; Williams MV; Glaser R
    Intervirology; 1990; 31(2-4):215-22. PubMed ID: 2165046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different mechanisms of protection by monoclonal and polyclonal antibodies during the course of herpes simplex virus infection.
    Eis-Hübinger AM; Mohr K; Schneweis KE
    Intervirology; 1991; 32(6):351-60. PubMed ID: 1657825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunogenicity of herpes simplex virus glycoproteins gC and gB and their role in protective immunity.
    Glorioso J; Schröder CH; Kumel G; Szczesiul M; Levine M
    J Virol; 1984 Jun; 50(3):805-12. PubMed ID: 6328010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibodies against synthetic peptides of herpes simplex virus type 1 glycoprotein D and their capability to neutralize viral infectivity in vitro.
    Weijer WJ; Drijfhout JW; Geerligs HJ; Bloemhoff W; Feijlbrief M; Bos CA; Hoogerhout P; Kerling KE; Popken-Boer T; Slopsema K
    J Virol; 1988 Feb; 62(2):501-10. PubMed ID: 2826811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection and characterisation of acyclovir-resistant herpes simplex virus type 1 mutants inducing altered DNA polymerase activities.
    Larder BA; Darby G
    Virology; 1985 Oct; 146(2):262-71. PubMed ID: 2996220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neutralization of herpes simplex virus ribonucleotide reductase activity by an oligopeptide-induced antiserum directed against subunit H2.
    Cohen EA; Gaudreau P; Brazeau P; Langelier Y
    J Virol; 1986 Dec; 60(3):1130-3. PubMed ID: 2431161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monoclonal antibodies to herpes simplex virus thymidine kinase.
    Banks LM; Vaughan PJ; Meredith D; Powell KL
    J Gen Virol; 1984 Sep; 65 ( Pt 9)():1625-30. PubMed ID: 6088685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of a major antibody binding epitope in the non-structural protein 3D of foot-and-mouth disease virus in cattle and the development of a monoclonal antibody with diagnostic applications.
    Yang M; Clavijo A; Li M; Hole K; Holland H; Wang H; Deng MY
    J Immunol Methods; 2007 Apr; 321(1-2):174-81. PubMed ID: 17320098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection of scFvs specific for HBV DNA polymerase using ribosome display.
    Lee MS; Kwon MH; Kim KH; Shin HJ; Park S; Kim HI
    J Immunol Methods; 2004 Jan; 284(1-2):147-57. PubMed ID: 14736425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration.
    Highlander SL; Cai WH; Person S; Levine M; Glorioso JC
    J Virol; 1988 Jun; 62(6):1881-8. PubMed ID: 2452895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions.
    Para MF; Parish ML; Noble AG; Spear PG
    J Virol; 1985 Aug; 55(2):483-8. PubMed ID: 2991571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific inhibition of herpes simplex virus DNA polymerase by helical peptides corresponding to the subunit interface.
    Digard P; Williams KP; Hensley P; Brooks IS; Dahl CE; Coen DM
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1456-60. PubMed ID: 7878000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The herpes simplex virus type I DNA polymerase. Polypeptide structure and antigenic domains.
    Weisshart K; Knopf CW
    Eur J Biochem; 1988 Jul; 174(4):707-16. PubMed ID: 2455639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of the herpes simplex virus type 1 65-kilodalton DNA-binding protein and DNA polymerase in the presence and absence of viral DNA synthesis.
    Goodrich LD; Schaffer PA; Dorsky DI; Crumpacker CS; Parris DS
    J Virol; 1990 Dec; 64(12):5738-49. PubMed ID: 2173766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mucosal and systemic antiviral antibodies in mice inoculated intravaginally with herpes simplex virus type 2.
    McDermott MR; Brais LJ; Evelegh MJ
    J Gen Virol; 1990 Jul; 71 ( Pt 7)():1497-504. PubMed ID: 2165134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of monoclonal antibodies recognizing amino- and carboxy-terminal epitopes of the herpes simplex virus UL42 protein.
    Sheaffer AK; Hurlburt WW; Stevens JT; Bifano M; Hamatake RK; Colonno RJ; Tenney DJ
    Virus Res; 1995 Oct; 38(2-3):305-14. PubMed ID: 8578868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation of DNA polymerase and RNA polymerase activities in cells infected with herpes simplex virus type 1.
    Müller WE; Zahn RK; Falke D
    Virology; 1978 Feb; 84(2):320-30. PubMed ID: 203094
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.