These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 28336339)

  • 1. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis.
    Nazeer H; Naseer N; Khan RA; Noori FM; Qureshi NK; Khan US; Khan MJ
    J Neural Eng; 2020 Oct; 17(5):056025. PubMed ID: 33055382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
    Malan NS; Sharma S
    Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications.
    Ali MU; Zafar A; Kallu KD; Masood H; Mannan MMN; Ibrahim MM; Kim S; Khan MA
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3361-3370. PubMed ID: 37436864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study.
    Zafar A; Hussain SJ; Ali MU; Lee SW
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.
    Naseer N; Hong KS
    Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application.
    Naseer N; Noori FM; Qureshi NK; Hong KS
    Front Hum Neurosci; 2016; 10():237. PubMed ID: 27252637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI.
    Hong KS; Naseer N; Kim YH
    Neurosci Lett; 2015 Feb; 587():87-92. PubMed ID: 25529197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces.
    Dong E; Li C; Li L; Du S; Belkacem AN; Chen C
    Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS.
    Li H; Gong A; Zhao L; Zhang W; Wang F; Fu Y
    Comput Intell Neurosci; 2021; 2021():6614112. PubMed ID: 33688336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Trial Classification of fNIRS Signals in Four Directions Motor Imagery Tasks Measured From Prefrontal Cortex.
    Peng H; Chao J; Wang S; Dang J; Jiang F; Hu B; Majoe D
    IEEE Trans Nanobioscience; 2018 Jul; 17(3):181-190. PubMed ID: 29994315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fNIRS-based Neurorobotic Interface for gait rehabilitation.
    Khan RA; Naseer N; Qureshi NK; Noori FM; Nazeer H; Khan MU
    J Neuroeng Rehabil; 2018 Feb; 15(1):7. PubMed ID: 29402310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach.
    Hosni SM; Borgheai SB; McLinden J; Shahriari Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3063-3073. PubMed ID: 33206606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic responses during standing and sitting activities: a study toward fNIRS-BCI.
    Almulla L; Al-Naib I; Althobaiti M
    Biomed Phys Eng Express; 2020 Jul; 6(5):055005. PubMed ID: 33444236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.