These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 28336339)
21. Discrimination of Two-Class Motor Imagery in a fNIRS Based Brain Computer Interface. Moslehi AH; Bagheri M; Ludwig AM; Davies TC Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4051-4054. PubMed ID: 33018888 [TBL] [Abstract][Full Text] [Related]
22. Recognition of Flexion and Extension Imagery Involving the Right and Left Arms Based on Deep Belief Network and Functional Near-Infrared Spectroscopy. Fu Y; Chen R; Gong A; Qian Q; Ding N; Zhang W; Su L; Zhao L J Healthc Eng; 2021; 2021():5533565. PubMed ID: 34306590 [TBL] [Abstract][Full Text] [Related]
23. A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking. Li C; Su M; Xu J; Jin H; Sun L IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):531-540. PubMed ID: 31940543 [TBL] [Abstract][Full Text] [Related]
24. A Graph-Based Feature Extraction Algorithm Towards a Robust Data Fusion Framework for Brain-Computer Interfaces. Zhu S; Hosni SI; Huang X; Borgheai SB; McLinden J; Shahriari Y; Ostadabbas S Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():878-881. PubMed ID: 34891430 [TBL] [Abstract][Full Text] [Related]
25. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface. Naseer N; Qureshi NK; Noori FM; Hong KS Comput Intell Neurosci; 2016; 2016():5480760. PubMed ID: 27725827 [TBL] [Abstract][Full Text] [Related]
26. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface. Siuly S; Li Y IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252 [TBL] [Abstract][Full Text] [Related]
27. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839 [TBL] [Abstract][Full Text] [Related]
28. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution. Trakoolwilaiwan T; Behboodi B; Lee J; Kim K; Choi JW Neurophotonics; 2018 Jan; 5(1):011008. PubMed ID: 28924568 [TBL] [Abstract][Full Text] [Related]
29. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals. Khan H; Noori FM; Yazidi A; Uddin MZ; Khan MNA; Mirtaheri P Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883949 [TBL] [Abstract][Full Text] [Related]
30. Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study. Zimmermann R; Marchal-Crespo L; Edelmann J; Lambercy O; Fluet MC; Riener R; Wolf M; Gassert R J Neuroeng Rehabil; 2013 Jan; 10():4. PubMed ID: 23336819 [TBL] [Abstract][Full Text] [Related]
31. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation. Hasan MAH; Khan MU; Mishra D Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476 [TBL] [Abstract][Full Text] [Related]
32. CNN-based classification of fNIRS signals in motor imagery BCI system. Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480 [No Abstract] [Full Text] [Related]
33. Estimation of force direction from functional near-infrared spectroscopy signals using sparse logistic regression. Sato T; Muto Y; Nambu I; Wada Y Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4639-42. PubMed ID: 23366962 [TBL] [Abstract][Full Text] [Related]
34. Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain-Computer Interface Using Adaptive Estimation of General Linear Model Coefficients. Qureshi NK; Naseer N; Noori FM; Nazeer H; Khan RA; Saleem S Front Neurorobot; 2017; 11():33. PubMed ID: 28769781 [TBL] [Abstract][Full Text] [Related]
35. Synchronizing Motor Imagery Cue in fNIRS Brain-Computer Interface to reduce confounding effects of respiration. Premchand B; Zhang Z; Yu J; Yang T; Ang KK Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083697 [TBL] [Abstract][Full Text] [Related]
36. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks. Buccino AP; Keles HO; Omurtag A PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580 [TBL] [Abstract][Full Text] [Related]
37. fNIRS-based brain-computer interfaces: a review. Naseer N; Hong KS Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060 [TBL] [Abstract][Full Text] [Related]
38. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy. Nagasawa T; Sato T; Nambu I; Wada Y J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755 [TBL] [Abstract][Full Text] [Related]
39. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification. Hsu WY Int J Neural Syst; 2013 Dec; 23(6):1350026. PubMed ID: 24156669 [TBL] [Abstract][Full Text] [Related]
40. Classification of hemodynamic responses associated with force and speed imagery for a brain-computer interface. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Med Syst; 2015 May; 39(5):53. PubMed ID: 25732084 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]