BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28336771)

  • 21. Pivotal role of LBD16 in root and root-like organ initiation.
    Liu W; Yu J; Ge Y; Qin P; Xu L
    Cell Mol Life Sci; 2018 Sep; 75(18):3329-3338. PubMed ID: 29943076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration.
    Fan M; Xu C; Xu K; Hu Y
    Cell Res; 2012 Jul; 22(7):1169-80. PubMed ID: 22508267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana.
    Goh T; Toyokura K; Yamaguchi N; Okamoto Y; Uehara T; Kaneko S; Takebayashi Y; Kasahara H; Ikeyama Y; Okushima Y; Nakajima K; Mimura T; Tasaka M; Fukaki H
    New Phytol; 2019 Oct; 224(2):749-760. PubMed ID: 31310684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ARF7 and ARF19 Transcription Factors Positively Regulate
    Huang KL; Ma GJ; Zhang ML; Xiong H; Wu H; Zhao CZ; Liu CS; Jia HX; Chen L; Kjorven JO; Li XB; Ren F
    Plant Physiol; 2018 Sep; 178(1):413-427. PubMed ID: 30026290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems.
    Rast MI; Simon R
    Plant Cell; 2012 Jul; 24(7):2917-33. PubMed ID: 22822207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genes co-regulated with LBD16 in nematode feeding sites inferred from in silico analysis show similarities to regulatory circuits mediated by the auxin/cytokinin balance in Arabidopsis.
    Cabrera J; Fenoll C; Escobar C
    Plant Signal Behav; 2015; 10(3):e990825. PubMed ID: 25664644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis.
    Soyano T; Thitamadee S; Machida Y; Chua NH
    Plant Cell; 2008 Dec; 20(12):3359-73. PubMed ID: 19088331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis.
    Wang JG; Chen CH; Chien CT; Hsieh HL
    Plant Physiol; 2011 Jun; 156(2):631-46. PubMed ID: 21525334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription factors WOX11 and LBD16 function with histone demethylase JMJ706 to control crown root development in rice.
    Geng L; Tan M; Deng Q; Wang Y; Zhang T; Hu X; Ye M; Lian X; Zhou DX; Zhao Y
    Plant Cell; 2024 May; 36(5):1777-1790. PubMed ID: 38190205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of LBD14 during ABA-mediated control of root system architecture in Arabidopsis.
    Jeon BW; Kim J
    Plant Signal Behav; 2018; 13(8):e1507405. PubMed ID: 30125143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LBD13 positively regulates lateral root formation in Arabidopsis.
    Cho C; Jeon E; Pandey SK; Ha SH; Kim J
    Planta; 2019 Apr; 249(4):1251-1258. PubMed ID: 30627888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots.
    Perotti MF; Ribone PA; Cabello JV; Ariel FD; Chan RL
    Plant J; 2019 Dec; 100(6):1224-1236. PubMed ID: 31444832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis.
    Chevalier F; Perazza D; Laporte F; Le Hénanff G; Hornitschek P; Bonneville JM; Herzog M; Vachon G
    Plant Physiol; 2008 Mar; 146(3):1142-54. PubMed ID: 18162594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lateral root development differs between main and secondary roots and depends on the ecotype.
    Perotti MF; Ariel FD; Chan RL
    Plant Signal Behav; 2020 Jun; 15(6):1755504. PubMed ID: 32310024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis.
    Shukla V; Lombardi L; Iacopino S; Pencik A; Novak O; Perata P; Giuntoli B; Licausi F
    Mol Plant; 2019 Apr; 12(4):538-551. PubMed ID: 30641154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial interactions between LBD10 and LBD27 are essential for male gametophyte development in Arabidopsis.
    Kim MJ; Kim M; Kim J
    Plant Signal Behav; 2015; 10(8):e1044193. PubMed ID: 26252070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana.
    Mitsuda N; Hisabori T; Takeyasu K; Sato MH
    Plant Cell Physiol; 2004 Jul; 45(7):845-54. PubMed ID: 15295067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana.
    Ikeyama Y; Tasaka M; Fukaki H
    Plant J; 2010 Jun; 62(5):865-75. PubMed ID: 20230485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development.
    Kim M; Kim MJ; Pandey S; Kim J
    Plant Cell Physiol; 2016 Nov; 57(11):2291-2299. PubMed ID: 27519310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GIGANTEA regulates lateral root formation by modulating auxin signaling in
    Singh A
    Plant Signal Behav; 2022 Dec; 17(1):2096780. PubMed ID: 35822517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.