BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28336775)

  • 1. NELF-E is recruited to DNA double-strand break sites to promote transcriptional repression and repair.
    Awwad SW; Abu-Zhayia ER; Guttmann-Raviv N; Ayoub N
    EMBO Rep; 2017 May; 18(5):745-764. PubMed ID: 28336775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NELF complex fosters BRCA1 and RAD51 recruitment to DNA damage sites and modulates sensitivity to PARP inhibition.
    Bishara LA; Machour FE; Awwad SW; Ayoub N
    DNA Repair (Amst); 2021 Jan; 97():103025. PubMed ID: 33248388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Regulation at DSBs: Mechanisms and Consequences.
    Machour FE; Ayoub N
    Trends Genet; 2020 Dec; 36(12):981-997. PubMed ID: 32001024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer.
    Ui A; Chiba N; Yasui A
    Cancer Sci; 2020 May; 111(5):1443-1451. PubMed ID: 32232911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDYL1 fosters double-strand break-induced transcription silencing and promotes homology-directed repair.
    Abu-Zhayia ER; Awwad SW; Ben-Oz BM; Khoury-Haddad H; Ayoub N
    J Mol Cell Biol; 2018 Aug; 10(4):341-357. PubMed ID: 29177481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks.
    Abu-Zhayia ER; Khoury-Haddad H; Guttmann-Raviv N; Serruya R; Jarrous N; Ayoub N
    Sci Rep; 2017 Apr; 7(1):1002. PubMed ID: 28432356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bon voyage: A transcriptional journey around DNA breaks.
    Caron P; van der Linden J; van Attikum H
    DNA Repair (Amst); 2019 Oct; 82():102686. PubMed ID: 31476573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends.
    Chappidi N; Quail T; Doll S; Vogel LT; Aleksandrov R; Felekyan S; Kühnemuth R; Stoynov S; Seidel CAM; Brugués J; Jahnel M; Franzmann TM; Alberti S
    Cell; 2024 Feb; 187(4):945-961.e18. PubMed ID: 38320550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of DNA repair in the absence of classical non-homologous end joining.
    Kang YJ; Yan CT
    DNA Repair (Amst); 2018 Aug; 68():34-40. PubMed ID: 29929045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways.
    Ghosh R; Roy S; Kamyab J; Danzter F; Franco S
    DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of DNA double-strand breaks in RNAPI- and RNAPII-transcribed loci.
    Lesage E; Clouaire T; Legube G
    DNA Repair (Amst); 2021 Aug; 104():103139. PubMed ID: 34111758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ADP-ribosyl)ation temporally confines SUMO-dependent ataxin-3 recruitment to control DNA double-strand break repair.
    Pfeiffer A; Herzog LK; Luijsterburg MS; Shah RG; Rother MB; Stoy H; Kühbacher U; van Attikum H; Shah GM; Dantuma NP
    J Cell Sci; 2021 Feb; 134(3):. PubMed ID: 33408245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?
    Haffner MC; De Marzo AM; Meeker AK; Nelson WG; Yegnasubramanian S
    Clin Cancer Res; 2011 Jun; 17(12):3858-64. PubMed ID: 21385925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of hnRPUL1 involved in DNA damage response is related to PARP1.
    Hong Z; Jiang J; Ma J; Dai S; Xu T; Li H; Yasui A
    PLoS One; 2013; 8(4):e60208. PubMed ID: 23577092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks.
    Singh S; Szlachta K; Manukyan A; Raimer HM; Dinda M; Bekiranov S; Wang YH
    J Biol Chem; 2020 Mar; 295(12):3990-4000. PubMed ID: 32029477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.
    Van Meter M; Simon M; Tombline G; May A; Morello TD; Hubbard BP; Bredbenner K; Park R; Sinclair DA; Bohr VA; Gorbunova V; Seluanov A
    Cell Rep; 2016 Sep; 16(10):2641-2650. PubMed ID: 27568560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.
    Ui A; Nagaura Y; Yasui A
    Mol Cell; 2015 May; 58(3):468-82. PubMed ID: 25921070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks.
    Caron P; Pankotai T; Wiegant WW; Tollenaere MAX; Furst A; Bonhomme C; Helfricht A; de Groot A; Pastink A; Vertegaal ACO; Luijsterburg MS; Soutoglou E; van Attikum H
    Genes Dev; 2019 Jun; 33(11-12):684-704. PubMed ID: 31048545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The negative elongation factor NELF promotes induced transcriptional response of Drosophila ecdysone-dependent genes.
    Mazina MY; Kovalenko EV; Vorobyeva NE
    Sci Rep; 2021 Jan; 11(1):172. PubMed ID: 33420323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.