These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28336851)

  • 1. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
    Pathi P; Peer A; Biswas R
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit.
    Biswas R; Xu C
    Opt Express; 2011 Jul; 19 Suppl 4():A664-72. PubMed ID: 21747533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.
    Zhou S; Yang Z; Gao P; Li X; Yang X; Wang D; He J; Ying Z; Ye J
    Nanoscale Res Lett; 2016 Dec; 11(1):194. PubMed ID: 27071681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
    Mavrokefalos A; Han SE; Yerci S; Branham MS; Chen G
    Nano Lett; 2012 Jun; 12(6):2792-6. PubMed ID: 22612694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.
    Biswas R; Timmons E
    Opt Express; 2013 Sep; 21 Suppl 5():A841-6. PubMed ID: 24104579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of broadband solar absorption beyond the lambertian limit in certain thin silicon photonic crystals.
    Hsieh ML; Kaiser A; Bhattacharya S; John S; Lin SY
    Sci Rep; 2020 Jul; 10(1):11857. PubMed ID: 32678229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Black Ultra-Thin Crystalline Silicon Wafers Reach the 4n
    Garín M; Pasanen TP; López G; Vähänissi V; Chen K; Martín I; Savin H
    Small; 2023 Sep; 19(39):e2302250. PubMed ID: 37259265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annual energy yield of mono- and bifacial silicon heterojunction solar modules with high-index dielectric nanodisk arrays as anti-reflective and light trapping structures.
    Slivina E; Bätzner D; Schmager R; Langenhorst M; Lehr J; Paetzold UW; Lemmer U; Rockstuhl C
    Opt Express; 2021 Oct; 29(21):34494-34509. PubMed ID: 34809238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture.
    Mendes MJ; Haque S; Sanchez-Sobrado O; Araújo A; Águas H; Fortunato E; Martins R
    iScience; 2018 May; 3():238-254. PubMed ID: 30428324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles.
    Tan H; Santbergen R; Smets AH; Zeman M
    Nano Lett; 2012 Aug; 12(8):4070-6. PubMed ID: 22738234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post passivation light trapping back contacts for silicon heterojunction solar cells.
    Smeets M; Bittkau K; Lentz F; Richter A; Ding K; Carius R; Rau U; Paetzold UW
    Nanoscale; 2016 Nov; 8(44):18726-18733. PubMed ID: 27787533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon enhanced ultrathin Cu
    Jamil S; Saha U; Alam MK
    Nanoscale Adv; 2023 May; 5(11):2887-2896. PubMed ID: 37260479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency.
    Jeong S; McGehee MD; Cui Y
    Nat Commun; 2013; 4():2950. PubMed ID: 24335845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light trapping in silicon nanowire solar cells.
    Garnett E; Yang P
    Nano Lett; 2010 Mar; 10(3):1082-7. PubMed ID: 20108969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.