These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 28336926)
1. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification. Li Y; Wang WX; Wang M Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926 [TBL] [Abstract][Full Text] [Related]
2. Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution. Li H; Shi L; Wang D; Wang M Aquat Toxicol; 2015 Sep; 166():42-9. PubMed ID: 26210816 [TBL] [Abstract][Full Text] [Related]
3. Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure. Wang M; Lee JS; Li Y Environ Sci Technol; 2017 May; 51(10):5820-5831. PubMed ID: 28414453 [TBL] [Abstract][Full Text] [Related]
4. Projected near-future ocean acidification decreases mercury toxicity in marine copepods. Wang M; Chen J; Lee YH; Lee JS; Wang D Environ Pollut; 2021 Sep; 284():117140. PubMed ID: 33930777 [TBL] [Abstract][Full Text] [Related]
5. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. Zhao F; Huang Y; Wei H; Wang M Sci Total Environ; 2024 Sep; 942():173585. PubMed ID: 38810735 [TBL] [Abstract][Full Text] [Related]
6. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. Xu X; Shi L; Wang M Environ Pollut; 2016 Nov; 218():1287-1297. PubMed ID: 27593353 [TBL] [Abstract][Full Text] [Related]
7. Have we been underestimating the effects of ocean acidification in zooplankton? Cripps G; Lindeque P; Flynn KJ Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283 [TBL] [Abstract][Full Text] [Related]
8. Effects of ocean acidification on copepods. Wang M; Jeong CB; Lee YH; Lee JS Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Shotgun Proteomics Associates Molecular-Level Cadmium Toxicity Responses with Compromised Growth and Reproduction in a Marine Copepod under Multigenerational Exposure. Wang M; Zhang C; Lee JS Environ Sci Technol; 2018 Feb; 52(3):1612-1623. PubMed ID: 29323882 [TBL] [Abstract][Full Text] [Related]
10. Nanoplastics potentiate mercury toxicity in a marine copepod under multigenerational exposure. Xie D; Zhang H; Wei H; Lin L; Wang D; Wang M Aquat Toxicol; 2023 May; 258():106497. PubMed ID: 36940520 [TBL] [Abstract][Full Text] [Related]
11. Acute and chronic toxicity of polychlorinated biphenyl 126 to Tigriopus japonicus: effects on survival, growth, reproduction, and intrinsic rate of population growth. Guo F; Wang L; Wang WX Environ Toxicol Chem; 2012 Mar; 31(3):639-45. PubMed ID: 22189719 [TBL] [Abstract][Full Text] [Related]
12. Effects of ocean acidification on life parameters and antioxidant system in the marine copepod Tigriopus japonicus. Lee YH; Kang HM; Kim MS; Wang M; Kim JH; Jeong CB; Lee JS Aquat Toxicol; 2019 Jul; 212():186-193. PubMed ID: 31129414 [TBL] [Abstract][Full Text] [Related]
13. High and diurnally fluctuating carbon dioxide exposure produces lower mercury toxicity in a marine copepod. Cheng L; Bai Z; Wei H; Chen Y; Wang M Mar Pollut Bull; 2023 Jul; 192():115016. PubMed ID: 37182245 [TBL] [Abstract][Full Text] [Related]
14. Warmer temperature increases mercury toxicity in a marine copepod. Bai Z; Wang M Ecotoxicol Environ Saf; 2020 Sep; 201():110861. PubMed ID: 32544748 [TBL] [Abstract][Full Text] [Related]
15. Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics. Zhang C; Jeong CB; Lee JS; Wang D; Wang M Environ Sci Technol; 2019 Jul; 53(14):8426-8436. PubMed ID: 31246436 [TBL] [Abstract][Full Text] [Related]
16. Microplastics at an environmentally relevant dose enhance mercury toxicity in a marine copepod under multigenerational exposure: Multi-omics perspective. Bai Z; He Y; Hu G; Cheng L; Wang M J Hazard Mater; 2024 Oct; 478():135529. PubMed ID: 39154477 [TBL] [Abstract][Full Text] [Related]
17. Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod Tigriopus japonicus. Chen L; Li X; Hong H; Shi D Aquat Toxicol; 2018 Jan; 194():94-102. PubMed ID: 29172130 [TBL] [Abstract][Full Text] [Related]
18. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Thor P; Dupont S Glob Chang Biol; 2015 Jun; 21(6):2261-71. PubMed ID: 25430823 [TBL] [Abstract][Full Text] [Related]
19. Efflux behavior of inorganic mercury and methylmercury in the marine copepod Tigriopus japonicus. Yu ZG; Zhang L; Wu Y; Jin B Sci Total Environ; 2020 Feb; 703():135655. PubMed ID: 31767324 [TBL] [Abstract][Full Text] [Related]
20. Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus. Li Z; Zhou H; Liu Y; Zhan J; Li W; Yang K; Yi X Chemosphere; 2020 Dec; 261():127711. PubMed ID: 32731021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]