These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28337138)

  • 1. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
    Arena E; Arena P; Strauss R; Patané L
    Front Neurorobot; 2017; 11():12. PubMed ID: 28337138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fly-Inspired Mushroom Bodies Model for Sensory-Motor Control Through Sequence and Subsequence Learning.
    Arena P; Calí M; Patané L; Portera A; Strauss R
    Int J Neural Syst; 2016 Sep; 26(6):1650035. PubMed ID: 27354193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
    Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2014; 8():3. PubMed ID: 24523694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the insect Mushroom Bodies: Application to sequence learning.
    Arena P; Calí M; Patané L; Portera A; Strauss R
    Neural Netw; 2015 Jul; 67():37-53. PubMed ID: 25864122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning expectation in insects: a recurrent spiking neural model for spatio-temporal representation.
    Arena P; Patané L; Termini PS
    Neural Netw; 2012 Aug; 32():35-45. PubMed ID: 22386503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.
    Jimenez-Fernandez A; Jimenez-Moreno G; Linares-Barranco A; Dominguez-Morales MJ; Paz-Vicente R; Civit-Balcells A
    Sensors (Basel); 2012; 12(4):3831-3856. PubMed ID: 22666004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Spiking CPGs for Online Manipulation During Hexapod Walking.
    Strohmer B; Manoonpong P; Larsen LB
    Front Neurorobot; 2020; 14():41. PubMed ID: 32676022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error-Based Learning Mechanism for Fast Online Adaptation in Robot Motor Control.
    Thor M; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2042-2051. PubMed ID: 31395565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired spiking neural network for nonlinear systems control.
    Pérez J; Cabrera JA; Castillo JJ; Velasco JM
    Neural Netw; 2018 Aug; 104():15-25. PubMed ID: 29702424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning.
    Ouyang W; Chi H; Pang J; Liang W; Ren Q
    Front Neurorobot; 2021; 15():627157. PubMed ID: 33574748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walknet, a bio-inspired controller for hexapod walking.
    Schilling M; Hoinville T; Schmitz J; Cruse H
    Biol Cybern; 2013 Aug; 107(4):397-419. PubMed ID: 23824506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotion Control With Frequency and Motor Pattern Adaptations.
    Thor M; Strohmer B; Manoonpong P
    Front Neural Circuits; 2021; 15():743888. PubMed ID: 34899196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating visual navigation using spiking neural network models of the insect mushroom bodies.
    Jesusanmi OO; Amin AA; Domcsek N; Knight JC; Philippides A; Nowotny T; Graham P
    Front Physiol; 2024; 15():1379977. PubMed ID: 38841209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
    Jimenez-Romero C; Johnson J
    Neural Comput Appl; 2017; 28(Suppl 1):755-764. PubMed ID: 29213189
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.