These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28337434)

  • 21. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton.
    Lee D; McLain B; Kang I; Young A
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2870-2879. PubMed ID: 34033531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking.
    Peng X; Acosta-Sojo Y; Wu MI; Stirling L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An assistance approach for a powered knee exoskeleton during level walking and the effects on metabolic cost.
    Jang J; Lim B; Shim Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6216-6219. PubMed ID: 31947263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altering gait variability with an ankle exoskeleton.
    Antonellis P; Galle S; De Clercq D; Malcolm P
    PLoS One; 2018; 13(10):e0205088. PubMed ID: 30356309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking.
    Malcolm P; Derave W; Galle S; De Clercq D
    PLoS One; 2013; 8(2):e56137. PubMed ID: 23418524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2015 Jan; 41(1):246-51. PubMed ID: 25455436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powered Hip Exoskeleton Reduces Residual Hip Effort Without Affecting Kinematics and Balance in Individuals With Above-Knee Amputations During Walking.
    Ishmael MK; Gunnell A; Pruyn K; Creveling S; Hunt G; Hood S; Archangeli D; Foreman KB; Lenzi T
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1162-1171. PubMed ID: 36194722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Bilateral Assistance for Hemiparetic Gait Post-Stroke Using a Powered Hip Exoskeleton.
    Pan YT; Kang I; Joh J; Kim P; Herrin KR; Kesar TM; Sawicki GS; Young AJ
    Ann Biomed Eng; 2023 Feb; 51(2):410-421. PubMed ID: 35963920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulating Ideal Assistive Strategies to Reduce the Metabolic Cost of Walking in the Elderly.
    Cseke B; Uchida TK; Doumit M
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2797-2805. PubMed ID: 35201978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and Evaluation of a Bilateral Semi-Rigid Exoskeleton to Assist Hip Motion.
    Mohammadzadeh Gonabadi A; Antonellis P; Dzewaltowski AC; Myers SA; Pipinos II; Malcolm P
    Biomimetics (Basel); 2024 Mar; 9(4):. PubMed ID: 38667222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 38. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit.
    Kim J; Quinlivan BT; Deprey LA; Arumukhom Revi D; Eckert-Erdheim A; Murphy P; Orzel D; Walsh CJ
    Sci Rep; 2022 Jun; 12(1):11004. PubMed ID: 35768486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA; Koller JR; Steele KM; Ferris DP
    J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.