These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28337556)
1. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation. Sun W; Yang X; Wang X; Lin X; Wang Y; Zhang S; Luan Y; Zhao ZK Biotechnol Lett; 2017 Jul; 39(7):1001-1007. PubMed ID: 28337556 [TBL] [Abstract][Full Text] [Related]
2. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis. Liu Y; Koh CMJ; Yap SA; Du M; Hlaing MM; Ji L BMC Microbiol; 2018 Feb; 18(1):14. PubMed ID: 29466942 [TBL] [Abstract][Full Text] [Related]
3. Characterization the carotenoid productions and profiles of three Rhodosporidium toruloides mutants from Agrobacterium tumefaciens-mediated transformation. Lin X; Gao N; Liu S; Zhang S; Song S; Ji C; Dong X; Su Y; Zhao ZK; Zhu B Yeast; 2017 Aug; 34(8):335-342. PubMed ID: 28426167 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of Torularhodin Production in Rhodosporidium toruloides by Agrobacterium tumefaciens-Mediated Transformation and Culture Condition Optimization. Bao R; Gao N; Lv J; Ji C; Liang H; Li S; Yu C; Wang Z; Lin X J Agric Food Chem; 2019 Jan; 67(4):1156-1164. PubMed ID: 30607946 [TBL] [Abstract][Full Text] [Related]
5. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. Liu H; Jiao X; Wang Y; Yang X; Sun W; Wang J; Zhang S; Zhao ZK FEMS Yeast Res; 2017 Mar; 17(2):. PubMed ID: 28369336 [TBL] [Abstract][Full Text] [Related]
6. Functional genomics of lipid metabolism in the oleaginous yeast Coradetti ST; Pinel D; Geiselman GM; Ito M; Mondo SJ; Reilly MC; Cheng YF; Bauer S; Grigoriev IV; Gladden JM; Simmons BA; Brem RB; Arkin AP; Skerker JM Elife; 2018 Mar; 7():. PubMed ID: 29521624 [TBL] [Abstract][Full Text] [Related]
7. Analysis of carotenoid profile changes and carotenogenic genes transcript levels in Rhodosporidium toruloides mutants from an optimized Agrobacterium tumefaciens-mediated transformation method. Sun Z; Lv J; Ji C; Liang H; Li S; Yang Z; Xu W; Zhang S; Lin X Biotechnol Appl Biochem; 2021 Feb; 68(1):71-81. PubMed ID: 32017256 [TBL] [Abstract][Full Text] [Related]
8. Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides. Sun W; Yang X; Wang X; Jiao X; Zhang S; Luan Y; Zhao ZK Biotechnol Lett; 2018 Jun; 40(6):933-940. PubMed ID: 29605943 [TBL] [Abstract][Full Text] [Related]
10. Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Wang Y; Lin X; Zhang S; Sun W; Ma S; Zhao ZK Yeast; 2016 Mar; 33(3):99-106. PubMed ID: 26648086 [TBL] [Abstract][Full Text] [Related]
11. Research progress on carotenoid production by Rhodosporidium toruloides. Xie ZT; Mi BQ; Lu YJ; Chen MT; Ye ZW Appl Microbiol Biotechnol; 2024 Dec; 108(1):7. PubMed ID: 38170311 [TBL] [Abstract][Full Text] [Related]
12. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. Lin X; Wang Y; Zhang S; Zhu Z; Zhou YJ; Yang F; Sun W; Wang X; Zhao ZK FEMS Yeast Res; 2014 Jun; 14(4):547-55. PubMed ID: 24495153 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the light regulatory mechanism in carotenoid production in Rhodosporidium toruloides NBRC 10032. Pham KD; Hakozaki Y; Takamizawa T; Yamazaki A; Yamazaki H; Mori K; Aburatani S; Tashiro K; Kuhara S; Takaku H; Shida Y; Ogasawara W Biosci Biotechnol Biochem; 2021 Jul; 85(8):1899-1909. PubMed ID: 34124766 [TBL] [Abstract][Full Text] [Related]
14. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. Jiao X; Zhang Q; Zhang S; Yang X; Wang Q; Zhao ZK FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30085062 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. Koh CM; Liu Y; Moehninsi ; Du M; Ji L BMC Microbiol; 2014 Feb; 14():50. PubMed ID: 25188820 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic Analysis Reveals the Potential Mechanisms for Improving Carotenoid Production in Gao H; Tang Y; Lv R; Jiang W; Jiang Y; Zhang W; Xin F; Jiang M J Agric Food Chem; 2024 Feb; 72(7):3793-3799. PubMed ID: 38327062 [TBL] [Abstract][Full Text] [Related]
17. Effect of light on carotenoid and lipid production in the oleaginous yeast Pham KD; Shida Y; Miyata A; Takamizawa T; Suzuki Y; Ara S; Yamazaki H; Masaki K; Mori K; Aburatani S; Hirakawa H; Tashiro K; Kuhara S; Takaku H; Ogasawara W Biosci Biotechnol Biochem; 2020 Jul; 84(7):1501-1512. PubMed ID: 32189572 [TBL] [Abstract][Full Text] [Related]
18. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Park YK; Nicaud JM; Ledesma-Amaro R Trends Biotechnol; 2018 Mar; 36(3):304-317. PubMed ID: 29132754 [TBL] [Abstract][Full Text] [Related]
19. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. Zhao Y; Song B; Li J; Zhang J World J Microbiol Biotechnol; 2021 Dec; 38(1):13. PubMed ID: 34873661 [TBL] [Abstract][Full Text] [Related]
20. Biosynthetic Pathway of Carotenoids in Tang W; Wang Y; Zhang J; Cai Y; He Z J Microbiol Biotechnol; 2019 Apr; 29(4):507-517. PubMed ID: 30856706 [No Abstract] [Full Text] [Related] [Next] [New Search]