These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 28337620)
1. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar A; Ok YS; Al-Wabel MI Environ Geochem Health; 2019 Aug; 41(4):1687-1704. PubMed ID: 28337620 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727 [TBL] [Abstract][Full Text] [Related]
3. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Guo J; Chen B Environ Sci Technol; 2014 Aug; 48(16):9103-12. PubMed ID: 25017808 [TBL] [Abstract][Full Text] [Related]
4. Impacts of kaolinite enrichment on biochar and hydrochar characterization, stability, toxicity, and maize germination and growth. Al-Swadi HA; Al-Farraj AS; Al-Wabel MI; Ahmad M; Usman ARA; Ahmad J; Mousa MA; Rafique MI Sci Rep; 2024 Jan; 14(1):1259. PubMed ID: 38218904 [TBL] [Abstract][Full Text] [Related]
5. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Ahmad M; Usman ARA; Rafique MI; Al-Wabel MI Environ Sci Pollut Res Int; 2019 May; 26(15):15136-15152. PubMed ID: 30924040 [TBL] [Abstract][Full Text] [Related]
6. Enhanced biochar stabilities and adsorption properties for tetracycline by synthesizing silica-composited biochar. Zhao Z; Nie T; Zhou W Environ Pollut; 2019 Nov; 254(Pt A):113015. PubMed ID: 31400663 [TBL] [Abstract][Full Text] [Related]
7. Ball-milled biochar for alternative carbon electrode. Lyu H; Yu Z; Gao B; He F; Huang J; Tang J; Shen B Environ Sci Pollut Res Int; 2019 May; 26(14):14693-14702. PubMed ID: 30945079 [TBL] [Abstract][Full Text] [Related]
8. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Harvey OR; Kuo LJ; Zimmerman AR; Louchouarn P; Amonette JE; Herbert BE Environ Sci Technol; 2012 Feb; 46(3):1415-21. PubMed ID: 22242866 [TBL] [Abstract][Full Text] [Related]
9. Effect of minerals on the stability of biochar. Yang Y; Sun K; Han L; Jin J; Sun H; Yang Y; Xing B Chemosphere; 2018 Aug; 204():310-317. PubMed ID: 29665534 [TBL] [Abstract][Full Text] [Related]
10. Co-pyrolysis of wood chips and bentonite/kaolin: Influence of temperatures and minerals on characteristics and carbon sequestration potential of biochar. Wang F; Zhang R; Donne SW; Beyad Y; Liu X; Duan X; Yang T; Su P; Sun H Sci Total Environ; 2022 Sep; 838(Pt 2):156081. PubMed ID: 35598667 [TBL] [Abstract][Full Text] [Related]
11. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Al-Wabel MI; Usman ARA; Al-Farraj AS; Ok YS; Abduljabbar A; Al-Faraj AI; Sallam AS Environ Geochem Health; 2019 Aug; 41(4):1705-1722. PubMed ID: 28424945 [TBL] [Abstract][Full Text] [Related]
12. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. Rafiq MK; Bachmann RT; Rafiq MT; Shang Z; Joseph S; Long R PLoS One; 2016; 11(6):e0156894. PubMed ID: 27327870 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
14. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Li S; Chen G Waste Manag; 2018 Aug; 78():198-207. PubMed ID: 32559905 [TBL] [Abstract][Full Text] [Related]
15. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation. Cui X; Hao H; He Z; Stoffella PJ; Yang X J Environ Manage; 2016 May; 173():95-104. PubMed ID: 26978731 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Huff MD; Kumar S; Lee JW J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598 [TBL] [Abstract][Full Text] [Related]
18. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Song B; Chen M; Zhao L; Qiu H; Cao X Sci Total Environ; 2019 Apr; 661():685-695. PubMed ID: 30684837 [TBL] [Abstract][Full Text] [Related]
20. Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes. Ben Salem I; El Gamal M; Sharma M; Hameedi S; Howari FM J Environ Manage; 2021 Dec; 299():113644. PubMed ID: 34474257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]