These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 28337670)

  • 1. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.
    Li X; Hu D; Tan Z; Bai J; Xiao Z; Yang Y; Shi J; Hong W
    Top Curr Chem (Cham); 2017 Apr; 375(2):42. PubMed ID: 28337670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Molecule Electronics: Chemical and Analytical Perspectives.
    Nichols RJ; Higgins SJ
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():389-417. PubMed ID: 26048551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application.
    Liu J; Huang X; Wang F; Hong W
    Acc Chem Res; 2019 Jan; 52(1):151-160. PubMed ID: 30500161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advance of Mechanically Controllable Break Junction for Molecular Electronics.
    Wang L; Wang L; Zhang L; Xiang D
    Top Curr Chem (Cham); 2017 Jun; 375(3):61. PubMed ID: 28540580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Break junction under electrochemical gating: testbed for single-molecule electronics.
    Huang C; Rudnev AV; Hong W; Wandlowski T
    Chem Soc Rev; 2015 Feb; 44(4):889-901. PubMed ID: 25560965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.
    Hybertsen MS; Venkataraman L
    Acc Chem Res; 2016 Mar; 49(3):452-60. PubMed ID: 26938931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation and Control of Charge Transport Through Single-Molecule Junctions.
    Wang K; Xu B
    Top Curr Chem (Cham); 2017 Feb; 375(1):17. PubMed ID: 28120303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A core-shell strategy for constructing a single-molecule junction.
    Wang LJ; Zhou KG; Tan L; Wang H; Shi ZF; Wu GP; Xu ZG; Cao XP; He HX; Zhang HL
    Chemistry; 2011 Jul; 17(30):8414-23. PubMed ID: 21656581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk.
    Wu XH; Chen F; Yan F; Pei LQ; Hou R; Horsley JR; Abell AD; Zhou XS; Yu J; Li DF; Jin S; Mao BW
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30584-30590. PubMed ID: 32538608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular electronics; nanowires from self-assembled pi-conjugated systems.
    Schenning AP; Meijer EW
    Chem Commun (Camb); 2005 Jul; (26):3245-58. PubMed ID: 15983639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Conductance through a Quadruple-Hydrogen-Bond-Bridged Supramolecular Junction.
    Wang L; Gong ZL; Li SY; Hong W; Zhong YW; Wang D; Wan LJ
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12393-7. PubMed ID: 27576570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Evolution of the Charge Transport Mechanism in Single-Molecule Break Junctions Revealed by Flicker Noise Analysis.
    Pan Z; Chen L; Tang C; Hu Y; Yuan S; Gao T; Shi J; Shi J; Yang Y; Hong W
    Small; 2022 Mar; 18(10):e2107220. PubMed ID: 34927352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Radical Electronics.
    Gao T; Daaoub A; Pan Z; Hu Y; Yuan S; Li Y; Dong G; Huang R; Liu J; Sangtarash S; Shi J; Yang Y; Sadeghi H; Hong W
    J Am Chem Soc; 2023 Aug; 145(31):17232-17241. PubMed ID: 37493612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s.
    Lu Q; Liu K; Zhang H; Du Z; Wang X; Wang F
    ACS Nano; 2009 Dec; 3(12):3861-8. PubMed ID: 19916506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical-Enhanced Charge Transport in Single-Molecule Phenothiazine Electrical Junctions.
    Liu J; Zhao X; Al-Galiby Q; Huang X; Zheng J; Li R; Huang C; Yang Y; Shi J; Manrique DZ; Lambert CJ; Bryce MR; Hong W
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13061-13065. PubMed ID: 28771925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promising anchoring groups for single-molecule conductance measurements.
    Kaliginedi V; Rudnev AV; Moreno-García P; Baghernejad M; Huang C; Hong W; Wandlowski T
    Phys Chem Chem Phys; 2014 Nov; 16(43):23529-39. PubMed ID: 25285778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transport through single π-conjugated molecules bridging between metal electrodes.
    Kiguchi M; Kaneko S
    Chemphyschem; 2012 Apr; 13(5):1116-26. PubMed ID: 22311828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically controllable break junctions for molecular electronics.
    Xiang D; Jeong H; Lee T; Mayer D
    Adv Mater; 2013 Sep; 25(35):4845-67. PubMed ID: 23913697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ.
    García R; Herranz MÁ; Leary E; González MT; Bollinger GR; Bürkle M; Zotti LA; Asai Y; Pauly F; Cuevas JC; Agraït N; Martín N
    Beilstein J Org Chem; 2015; 11():1068-78. PubMed ID: 26199662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.