BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28337762)

  • 21. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice.
    Yi K; Wu Z; Zhou J; Du L; Guo L; Wu Y; Wu P
    Plant Physiol; 2005 Aug; 138(4):2087-96. PubMed ID: 16006597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.).
    Shen C; Yue R; Yang Y; Zhang L; Sun T; Tie S; Wang H
    PLoS One; 2014; 9(11):e112906. PubMed ID: 25386911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.
    Dai X; Wang Y; Zhang WH
    J Exp Bot; 2016 Feb; 67(3):947-60. PubMed ID: 26663563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene.
    Aung K; Lin SI; Wu CC; Huang YT; Su CL; Chiou TJ
    Plant Physiol; 2006 Jul; 141(3):1000-11. PubMed ID: 16679417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties.
    Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B.
    Lee YS; Yi J; An G
    Plant Mol Biol; 2016 Jul; 91(4-5):413-27. PubMed ID: 27039184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-transcriptional regulation of Ghd7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice.
    Zheng T; Sun J; Zhou S; Chen S; Lu J; Cui S; Tian Y; Zhang H; Cai M; Zhu S; Wu M; Wang Y; Jiang L; Zhai H; Wang H; Wan J
    New Phytol; 2019 Oct; 224(1):306-320. PubMed ID: 31225911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.
    Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S
    Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OsMYB58 Negatively Regulates Plant Growth and Development by Regulating Phosphate Homeostasis.
    Baek D; Hong S; Kim HJ; Moon S; Jung KH; Yang WT; Kim DH
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice.
    Ye Y; Yuan J; Chang X; Yang M; Zhang L; Lu K; Lian X
    PLoS One; 2015; 10(5):e0126186. PubMed ID: 25970642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miR444a has multiple functions in the rice nitrate-signaling pathway.
    Yan Y; Wang H; Hamera S; Chen X; Fang R
    Plant J; 2014 Apr; 78(1):44-55. PubMed ID: 24460537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice.
    Meng Q; Zhang W; Hu X; Shi X; Chen L; Dai X; Qu H; Xia Y; Liu W; Gu M; Xu G
    Plant J; 2020 Dec; 104(5):1269-1284. PubMed ID: 32996185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.
    Hu B; Zhu C; Li F; Tang J; Wang Y; Lin A; Liu L; Che R; Chu C
    Plant Physiol; 2011 Jul; 156(3):1101-15. PubMed ID: 21317339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of OsSPX1 in phosphate homeostasis in rice.
    Wang C; Ying S; Huang H; Li K; Wu P; Shou H
    Plant J; 2009 Mar; 57(5):895-904. PubMed ID: 19000161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice.
    Shi J; Hu H; Zhang K; Zhang W; Yu Y; Wu Z; Wu P
    J Exp Bot; 2014 Mar; 65(3):859-70. PubMed ID: 24368504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses.
    Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK
    Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OsbHLH6 interacts with OsSPX4 and regulates the phosphate starvation response in rice.
    He Q; Lu H; Guo H; Wang Y; Zhao P; Li Y; Wang F; Xu J; Mo X; Mao C
    Plant J; 2021 Feb; 105(3):649-667. PubMed ID: 33128314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (
    Dong C; He F; Berkowitz O; Liu J; Cao P; Tang M; Shi H; Wang W; Li Q; Shen Z; Whelan J; Zheng L
    Plant Cell; 2018 Oct; 30(10):2267-2285. PubMed ID: 30254029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SbPHO2, a conserved Pi starvation signalling gene, is involved in the regulation of the uptake of multiple nutrients in sorghum.
    Zhu Z; Qu K; Li D; Zhang L; Wang C; Cong L; Bai C; Lu X
    Plant Sci; 2023 Feb; 327():111556. PubMed ID: 36481362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.