These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28337917)

  • 41. Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles.
    Hiltrop D; Cychy S; Elumeeva K; Schuhmann W; Muhler M
    Beilstein J Org Chem; 2018; 14():1428-1435. PubMed ID: 29977406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the diffusion of ferrocenemethanol in room-temperature ionic liquids: an electrochemical study.
    Lovelock KR; Ejigu A; Loh SF; Men S; Licence P; Walsh DA
    Phys Chem Chem Phys; 2011 Jun; 13(21):10155-64. PubMed ID: 21526252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frequency dependence of the electrochemical activity contrast in AC-scanning electrochemical microscopy and atomic force microscopy-AC-scanning electrochemical microscopy imaging.
    Eckhard K; Kranz C; Shin H; Mizaikoff B; Schuhmann W
    Anal Chem; 2007 Jul; 79(14):5435-8. PubMed ID: 17567104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.
    Weinstock BA; Guiney LM; Loose C
    Appl Spectrosc; 2012 Nov; 66(11):1311-9. PubMed ID: 23146187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions.
    Kim J; Kim BK; Cho SK; Bard AJ
    J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scanning Electrochemical Microscopy with Forced Convection Introduced by High-Precision Stirring.
    Iffelsberger C; Vatsyayan P; Matysik FM
    Anal Chem; 2017 Feb; 89(3):1658-1664. PubMed ID: 28208264
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micropipet delivery-substrate collection mode of scanning electrochemical microscopy for the imaging of electrochemical reactions and the screening of methanol oxidation electrocatalysts.
    Lin CL; Rodríguez-López J; Bard AJ
    Anal Chem; 2009 Nov; 81(21):8868-77. PubMed ID: 19817452
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scanning electrochemical microscopy of metallic biomaterials: reaction rate and ion release imaging modes.
    Gilbert JL; Smith SM; Lautenschlager EP
    J Biomed Mater Res; 1993 Nov; 27(11):1357-66. PubMed ID: 8262998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies.
    Gabrielli C; Keddam M; Portail N; Rousseau P; Takenouti H; Vivier V
    J Phys Chem B; 2006 Oct; 110(41):20478-85. PubMed ID: 17034233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films.
    Ooya T; Sakata Y; Choi HW; Takeuchi T
    Acta Biomater; 2016 Jul; 38():163-7. PubMed ID: 27090591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical and spectroelectrochemical characterization of an iridium-based molecular catalyst for water splitting: turnover frequencies, stability, and electrolyte effects.
    Diaz-Morales O; Hersbach TJ; Hetterscheid DG; Reek JN; Koper MT
    J Am Chem Soc; 2014 Jul; 136(29):10432-9. PubMed ID: 24977640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scanning electrochemical microscopy at variable temperatures.
    Schäfer D; Puschhof A; Schuhmann W
    Phys Chem Chem Phys; 2013 Apr; 15(14):5215-23. PubMed ID: 23348196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiplex Infrared Spectroscopy Imaging for Monitoring Spatially Resolved Redox Chemistry.
    Macedo LJA; Crespilho FN
    Anal Chem; 2018 Feb; 90(3):1487-1491. PubMed ID: 29359936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scanning electrochemical microscopy: theory and characterization of electrodes of finite conical geometry.
    Zoski CG; Liu B; Bard AJ
    Anal Chem; 2004 Jul; 76(13):3646-54. PubMed ID: 15228336
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A setup for the coupling of a thin-layer electrochemical flow cell to electrospray mass spectrometry.
    Bökman CF; Zettersten C; Sjöberg PJ; Nyholm L
    Anal Chem; 2004 Apr; 76(7):2017-24. PubMed ID: 15053666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scanning electrochemical microscopy with slightly recessed nanotips.
    Sun P; Mirkin MV
    Anal Chem; 2007 Aug; 79(15):5809-16. PubMed ID: 17583969
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mediator-Free SECM for Probing the Diffusion Layer pH with Functionalized Gold Ultramicroelectrodes.
    Monteiro MCO; Jacobse L; Touzalin T; Koper MTM
    Anal Chem; 2020 Jan; 92(2):2237-2243. PubMed ID: 31874560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative Subtractively Normalized Interfacial Fourier Transform Infrared Reflection Spectroscopy Study of the Adsorption of Adenine on Au(111) Electrodes.
    Prieto F; Su Z; Leitch JJ; Rueda M; Lipkowski J
    Langmuir; 2016 Apr; 32(16):3827-35. PubMed ID: 27040121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrochemical ATR-SEIRAS Using Low-Cost, Micromachined Si Wafers.
    Morhart TA; Unni B; Lardner MJ; Burgess IJ
    Anal Chem; 2017 Nov; 89(21):11818-11824. PubMed ID: 29019249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.