These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28337971)

  • 21. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.
    Liu Z; Liu G; Liu X; Huang S; Wang Y; Pan P; Liu M
    Nanotechnology; 2015 Jun; 26(23):235702. PubMed ID: 25987526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber.
    Jen YJ; Huang YJ; Liu WC; Lin YW
    Sci Rep; 2017 Jan; 7():39791. PubMed ID: 28045135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial.
    Bai Y; Zhao L; Ju D; Jiang Y; Liu L
    Opt Express; 2015 Apr; 23(7):8670-80. PubMed ID: 25968705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of perfect narrow-band absorber in silicon nano hole array.
    Li Q; Tang H; Zhao Y; Liu H; Shen Z; Wang T; Yang H; Wang X; Gong Y; Gao J
    Opt Express; 2023 Sep; 31(19):31644-31653. PubMed ID: 37710678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial.
    Tung BS; Khuyen BX; Kim YJ; Lam VD; Kim KW; Lee Y
    Sci Rep; 2017 Sep; 7(1):11507. PubMed ID: 28912553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating.
    Yoon JW; Koh GM; Song SH; Magnusson R
    Phys Rev Lett; 2012 Dec; 109(25):257402. PubMed ID: 23368498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Partially hollowed ultra-thin dielectric meta-surface for transmission manipulation.
    Liu G; Fu G; Liu Z; Huang Z; Chen J
    Opt Express; 2016 Sep; 24(18):20580-5. PubMed ID: 27607661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible metasurface black nickel with stepped nanopillars.
    Qian Q; Yan Y; Wang C
    Opt Lett; 2018 Mar; 43(6):1231-1234. PubMed ID: 29543259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thin layer broadband porous chromium black absorber fabricated through wet-etching process.
    Zhou L; Li Z; Zhang J; Li D; Liu D; Li Y; Wang X
    RSC Adv; 2019 May; 9(26):14649-14656. PubMed ID: 35516328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces.
    Bhattarai K; Silva S; Song K; Urbas A; Lee SJ; Ku Z; Zhou J
    Sci Rep; 2017 Sep; 7(1):10569. PubMed ID: 28874696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency.
    Khuyen BX; Tung BS; Kim YJ; Hwang JS; Kim KW; Rhee JY; Lam VD; Kim YH; Lee Y
    Sci Rep; 2018 Aug; 8(1):11632. PubMed ID: 30072795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarization-insensitive and wide-incident-angle optical absorber with periodically patterned graphene-dielectric arrays.
    Zou X; Zheng G; Cong J; Xu L; Chen Y; Lai M
    Opt Lett; 2018 Jan; 43(1):46-49. PubMed ID: 29328193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array.
    Zhou Y; Luo M; Shen S; Zhang H; Pu D; Chen L
    Opt Express; 2018 Oct; 26(21):27482-27491. PubMed ID: 30469814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadened band near-perfect absorber based on amorphous silicon metasurface.
    Si J; Yu X; Zhang J; Yang W; Liu S; Deng X
    Opt Express; 2020 Jun; 28(12):17900-17905. PubMed ID: 32679992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor.
    Wu H; Shi F; Chen Y
    Opt Express; 2016 Sep; 24(18):20663-71. PubMed ID: 27607670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.
    Shen S; Qiao W; Ye Y; Zhou Y; Chen L
    Opt Express; 2015 Jan; 23(2):963-70. PubMed ID: 25835855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators.
    Yahiaoui R; Hanai K; Takano K; Nishida T; Miyamaru F; Nakajima M; Hangyo M
    Opt Lett; 2015 Jul; 40(13):3197-200. PubMed ID: 26125401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thin-film perfect infrared absorbers over single- and dual-band atmospheric windows.
    Zhang J; Wei R; ElKabbash M; Campbell EM; Guo C
    Opt Lett; 2020 May; 45(10):2800-2803. PubMed ID: 32412470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband continuous/discrete spectrum optical absorber using graphene-wrapped fractal oligomers.
    Raad SH; Atlasbaf Z
    Opt Express; 2020 Jun; 28(12):18049-18058. PubMed ID: 32680006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.