These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28337972)

  • 21. Saclike-silicon nanoparticles anchored in ZIF-8 derived spongy matrix as high-performance anode for lithium-ion batteries.
    Wei Q; Chen YM; Hong XJ; Song CL; Yang Y; Si LP; Zhang M; Cai YP
    J Colloid Interface Sci; 2020 Apr; 565():315-325. PubMed ID: 31978794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode.
    Yu P; Li Z; Han M; Yu J
    Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Growth of MoO
    Liu C; Luo S; Huang H; Zhai Y; Wang Z
    ChemSusChem; 2019 Feb; 12(4):873-880. PubMed ID: 30461212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.
    Yang J; Guo Y; Zhang Y; Sun C; Yan Q; Dong X
    Nanotechnology; 2016 Sep; 27(36):365401. PubMed ID: 27479691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MXene/Si@SiO
    Zhang Y; Mu Z; Lai J; Chao Y; Yang Y; Zhou P; Li Y; Yang W; Xia Z; Guo S
    ACS Nano; 2019 Feb; 13(2):2167-2175. PubMed ID: 30689350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Confined Solid Electrolyte Interphase Growth Space with Solid Polymer Electrolyte in Hollow Structured Silicon Anode for Li-Ion Batteries.
    Ma T; Yu X; Cheng X; Li H; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13247-13254. PubMed ID: 28374994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust Micron-Sized Silicon Secondary Particles Anchored by Polyimide as High-Capacity, High-Stability Li-Ion Battery Anode.
    Lee PK; Tan T; Wang S; Kang W; Lee CS; Yu DYW
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34132-34139. PubMed ID: 30213183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational design of few-layer MoSe
    Zeng L; Fang Y; Xu L; Zheng C; Yang MQ; He J; Xue H; Qian Q; Wei M; Chen Q
    Nanoscale; 2019 Apr; 11(14):6766-6775. PubMed ID: 30907895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery.
    Li X; Xing Y; Xu J; Deng Q; Shao LH
    Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode.
    Zhang J; Fan S; Wang H; Qian J; Yang H; Ai X; Liu J
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13251-13256. PubMed ID: 30874420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.
    Xu W; Xie Z; Cui X; Zhao K; Zhang L; Dietrich G; Dooley KM; Wang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22533-41. PubMed ID: 26389757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic Protecting-Etching Synthesis of Carbon Nanoboxes@Silicon for High-Capacity Lithium-Ion Battery.
    Liu X; Yuan M; Shi W; Fei A; Tian Y; Hu ZY; Chen L; Li Y; Su BL
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17870-17880. PubMed ID: 38537160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hollow Structured Silicon Anodes with Stabilized Solid Electrolyte Interphase Film for Lithium-Ion Batteries.
    Lv Q; Liu Y; Ma T; Zhu W; Qiu X
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23501-6. PubMed ID: 26402521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silicon Nanoparticles Embedded in N-Doped Few-Layered Graphene: Facile Synthesis and Application as an Effective Anode for Lithium Ion Batteries.
    Luan Y; Yang B; Zhu K; Shao S; Gao Y; Cheng K; Yan J; Ye K; Wang G; Cao D
    Chempluschem; 2019 Oct; 84(10):1519-1524. PubMed ID: 31943930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Nanostructured Si/SiOC Composite Anode with Volume-Change-Buffering Microstructure for Lithium-Ion Batteries.
    Wu Z; Lv W; Cheng X; Gao J; Qian Z; Tian D; Li J; He W; Yang C
    Chemistry; 2019 Feb; 25(10):2604-2609. PubMed ID: 30537126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Graphene on the Performance of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries.
    Ni C; Xia C; Liu W; Xu W; Shan Z; Lei X; Qin H; Tao Z
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries.
    Li W; Li M; Shi JA; Zhong X; Gu L; Yu Y
    Nanoscale; 2018 Jul; 10(26):12430-12435. PubMed ID: 29926042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the Potential of Carbonized Nano-Si within G@C@Si Anodes for Lithium-Ion Rechargeable Batteries.
    Maddipatla R; Loka C; Lee KS
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58437-58450. PubMed ID: 38079573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.