These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28338051)

  • 1. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.
    Tsuji H; Noda S; Kimura T; Sobue T; Arakawa Y
    Sci Rep; 2017 Mar; 7():45170. PubMed ID: 28338051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary Stereocomplex Formation of One l-Configured and Two d-Configured Optically Active Polyesters, Poly(l-2-hydroxybutanoic acid), Poly(d-2-hydroxybutanoic acid), and Poly(d-lactic acid).
    Tsuji H; Hosokawa M; Sakamoto Y
    ACS Macro Lett; 2012 Jun; 1(6):687-691. PubMed ID: 35607088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and stereocomplex formation of enantiomeric alternating copolymers with two types of chiral centers, poly(lactic acid-
    Tsuji H; Nakayama K; Arakawa Y
    RSC Adv; 2020 Oct; 10(64):39000-39007. PubMed ID: 35518423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum: Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.
    Tsuji H; Noda S; Kimura T; Sobue T; Arakawa Y
    Sci Rep; 2018 May; 8():46989. PubMed ID: 29786692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid).
    Fukushima K; Chang YH; Kimura Y
    Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers.
    Ren Q; Wu M; Weng Z; Zhu X; Li W; Huang P; Wang L; Zheng W; Ohshima M
    Carbohydr Polym; 2022 Jan; 276():118800. PubMed ID: 34823806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator.
    Chang WW; Niu J; Peng H; Rong W
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (lactic acid) blends: Processing, properties and applications.
    Nofar M; Sacligil D; Carreau PJ; Kamal MR; Heuzey MC
    Int J Biol Macromol; 2019 Mar; 125():307-360. PubMed ID: 30528997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications.
    Tsuji H
    Macromol Biosci; 2005 Jul; 5(7):569-97. PubMed ID: 15997437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biopolymer stereocomplexes.
    Slager J; Domb AJ
    Adv Drug Deliv Rev; 2003 Apr; 55(4):549-83. PubMed ID: 12706050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol).
    von Burkersroda F; Gref R; Göpferich A
    Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.
    Bao J; Han L; Shan G; Bao Y; Pan P
    J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation and sustained release of a model drug, indomethacin, using CO(2)-based microencapsulation.
    Liu H; Finn N; Yates MZ
    Langmuir; 2005 Jan; 21(1):379-85. PubMed ID: 15620328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups.
    Qi L; Zhu Q; Cao D; Liu T; Zhu KR; Chang K; Gao Q
    Polymers (Basel); 2020 Mar; 12(4):. PubMed ID: 32244536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-
    Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y
    RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hetero-stereocomplexes of D-poly(lactic acid) and the LHRH analogue leuprolide. Application in controlled release.
    Slager J; Domb AJ
    Eur J Pharm Biopharm; 2004 Nov; 58(3):461-9. PubMed ID: 15451519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.