These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 28338135)
1. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry. McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135 [TBL] [Abstract][Full Text] [Related]
2. Determination of nerve agent metabolites in human urine by isotope-dilution gas chromatography-tandem mass spectrometry after solid phase supported derivatization. Lin Y; Chen J; Yan L; Guo L; Wu B; Li C; Feng J; Liu Q; Xie J Anal Bioanal Chem; 2014 Aug; 406(21):5213-20. PubMed ID: 24633564 [TBL] [Abstract][Full Text] [Related]
3. Determination of the main hydrolysis products of organophosphorus nerve agents, methylphosphonic acids, in human serum by indirect photometric detection ion chromatography. Katagi M; Nishikawa M; Tatsuno M; Tsuchihashi H J Chromatogr B Biomed Sci Appl; 1997 Sep; 698(1-2):81-8. PubMed ID: 9367195 [TBL] [Abstract][Full Text] [Related]
4. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Kolakowski BM; D'Agostino PA; Chenier C; Mester Z Anal Chem; 2007 Nov; 79(21):8257-65. PubMed ID: 17896827 [TBL] [Abstract][Full Text] [Related]
5. Quantitative analysis of chemical warfare agent degradation products in beverages by liquid chromatography tandem mass spectrometry. Owens J; Koester C J Agric Food Chem; 2009 Sep; 57(18):8227-35. PubMed ID: 19685865 [TBL] [Abstract][Full Text] [Related]
6. Insects as Chemical Sensors: Detection of Chemical Warfare Agent Simulants and Hydrolysis Products in the Blow Fly Using LC-MS/MS. Dowling SN; Skaggs CL; Owings CG; Moctar K; Picard CJ; Manicke NE Environ Sci Technol; 2022 Mar; 56(6):3535-3543. PubMed ID: 35188758 [TBL] [Abstract][Full Text] [Related]
7. Quantification of sarin and cyclosarin metabolites isopropyl methylphosphonic acid and cyclohexyl methylphosphonic acid in minipig plasma using isotope-dilution and liquid chromatography- time-of-flight mass spectrometry. Evans RA; Jakubowski EM; Muse WT; Matson K; Hulet SW; Mioduszewski RJ; Thomson SA; Totura AL; Renner JA; Crouse CL J Anal Toxicol; 2008; 32(1):78-85. PubMed ID: 18269798 [TBL] [Abstract][Full Text] [Related]
8. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection. Richardson DD; Caruso JA Anal Bioanal Chem; 2007 Jun; 388(4):809-23. PubMed ID: 17356819 [TBL] [Abstract][Full Text] [Related]
9. Target analysis of tert-butyldimethylsilyl derivatives of nerve agent hydrolysis products by selectable one-dimensional or two-dimensional gas chromatography-mass spectrometry. Seto Y; Tachikawa M; Kanamori-Kataoka M; Sasamoto K; Ochiai N J Chromatogr A; 2017 Jun; 1501():99-106. PubMed ID: 28434709 [TBL] [Abstract][Full Text] [Related]
10. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications. Tsai CW; Tipple CA; Yost RA Rapid Commun Mass Spectrom; 2018 Apr; 32(7):552-560. PubMed ID: 29380926 [TBL] [Abstract][Full Text] [Related]
11. On-line solid-phase extraction liquid chromatography-continuous flow frit fast atom bombardment mass spectrometric and tandem mass spectrometric determination of hydrolysis products of nerve agents alkyl methylphosphonic acids by p-bromophenacyl derivatization. Katagi M; Tatsuno M; Nishikawa M; Tsuchihashi H J Chromatogr A; 1999 Feb; 833(2):169-79. PubMed ID: 10081830 [TBL] [Abstract][Full Text] [Related]
12. Screening of nerve agent degradation products by MALDI-TOFMS. Shu YR; Su AK; Liu JT; Lin CH Anal Chem; 2006 Jul; 78(13):4697-701. PubMed ID: 16808484 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure. Appel AS; McDonough JH; McMonagle JD; Logue BA Anal Chem; 2016 Jun; 88(12):6523-30. PubMed ID: 27161086 [TBL] [Abstract][Full Text] [Related]
14. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS]. Steiner WE; Harden CS; Hong F; Klopsch SJ; Hill HH; McHugh VM J Am Soc Mass Spectrom; 2006 Feb; 17(2):241-5. PubMed ID: 16413205 [TBL] [Abstract][Full Text] [Related]
15. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures. Dumlao MC; Jeffress LE; Gooding JJ; Donald WA Analyst; 2016 Jun; 141(12):3714-21. PubMed ID: 26990180 [TBL] [Abstract][Full Text] [Related]
16. Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by "Paper-Spray" Ionization. Dhummakupt ES; Mach PM; Carmany D; Demond PS; Moran TS; Connell T; Wylie HS; Manicke NE; Nilles JM; Glaros T Anal Chem; 2017 Oct; 89(20):10866-10872. PubMed ID: 28898050 [TBL] [Abstract][Full Text] [Related]
17. Monitoring Exposure to Five Chemical Warfare Agents Using the Dried Urine Spot Technique and Liquid Chromatography-Mass Spectrometry/Mass Spectrometry-In Vivo Determination of Sarin Metabolite in Mice. Yishai Aviram L; Dagan S; Hindi A; Chapman S; Gez R; Drug E Molecules; 2023 Nov; 28(23):. PubMed ID: 38067417 [TBL] [Abstract][Full Text] [Related]
18. Direct derivatization and gas chromatography-tandem mass spectrometry identification of nerve agent biomarkers in urine samples. Subramaniam R; Östin A; Nilsson C; Åstot C J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Jun; 928():98-105. PubMed ID: 23603296 [TBL] [Abstract][Full Text] [Related]
19. Quantitative analysis of chemical warfare agent degradation products in reaction masses using capillary electrophoresis. Nassar AE; Lucas SV; Myler CA; Jones WR; Campisano M; Hoffland LD Anal Chem; 1998 Sep; 70(17):3598-604. PubMed ID: 9737210 [TBL] [Abstract][Full Text] [Related]
20. The trace analysis of alkyl alkylphosphonic acids in urine using gas chromatography-ion trap negative ion tandem mass spectrometry. Riches J; Morton I; Read RW; Black RM J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 816(1-2):251-8. PubMed ID: 15664357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]