BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28338312)

  • 1. Engineering Nanoscale Iron Oxides for Uranyl Sorption and Separation: Optimization of Particle Core Size and Bilayer Surface Coatings.
    Li W; Troyer LD; Lee SS; Wu J; Kim C; Lafferty BJ; Catalano JG; Fortner JD
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13163-13172. PubMed ID: 28338312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous aggregation and surface deposition processes of engineered superparamagnetic iron oxide nanoparticles for environmental applications.
    Li W; Liu D; Wu J; Kim C; Fortner JD
    Environ Sci Technol; 2014 Oct; 48(20):11892-900. PubMed ID: 25222070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and Surface Complexation Modeling of U(VI) Adsorption to Engineered Iron Oxide Nanoparticles.
    Pan Z; Li W; Fortner JD; Giammar DE
    Environ Sci Technol; 2017 Aug; 51(16):9219-9226. PubMed ID: 28749653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous Aggregation Behavior of Engineered Superparamagnetic Iron Oxide Nanoparticles: Effects of Oxidative Surface Aging.
    Li W; Lee SS; Mittelman AM; Liu D; Wu J; Hinton CH; Abriola LM; Pennell KD; Fortner JD
    Environ Sci Technol; 2016 Dec; 50(23):12789-12798. PubMed ID: 27934273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future.
    Ajinkya N; Yu X; Kaithal P; Luo H; Somani P; Ramakrishna S
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. U(VI) sorption and reduction kinetics on the magnetite (111) surface.
    Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA
    Environ Sci Technol; 2012 Apr; 46(7):3821-30. PubMed ID: 22394451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.
    Sun Y; Ding C; Cheng W; Wang X
    J Hazard Mater; 2014 Sep; 280():399-408. PubMed ID: 25194557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced uranium sorption on aluminum oxide pretreated with arsenate. Part II: Spectroscopic studies.
    Tang Y; McDonald J; Reeder RJ
    Environ Sci Technol; 2009 Jun; 43(12):4452-8. PubMed ID: 19603661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of uranium(VI) sorption on titanium dioxide by surface iron(III) species in ferric oxide/titanium dioxide systems.
    Comarmond MJ; Payne TE; Collins RN; Palmer G; Lumpkin GR; Angove MJ
    Environ Sci Technol; 2012 Oct; 46(20):11128-34. PubMed ID: 23013221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states.
    Abid AD; Kanematsu M; Young TM; Kennedy IM
    Aerosol Sci Technol; 2013 Feb; 47(2):169-176. PubMed ID: 23645964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.
    Crane RA; Dickinson M; Popescu IC; Scott TB
    Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium(VI) sorption complexes on silica in the presence of calcium and carbonate.
    Saleh AS; Lee JY; Jo Y; Yun JI
    J Environ Radioact; 2018 Feb; 182():63-69. PubMed ID: 29195123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface reactions kinetics between nanocrystalline magnetite and uranyl.
    Missana T; Maffiotte C; García-Gutiérrez M
    J Colloid Interface Sci; 2003 May; 261(1):154-60. PubMed ID: 12725835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides.
    Katsoyiannis IA; Althoff HW; Bartel H; Jekel M
    Water Res; 2006 Nov; 40(19):3646-52. PubMed ID: 16908045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface.
    Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA
    Environ Sci Technol; 2012 Apr; 46(7):3811-20. PubMed ID: 22364181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core-Shell Structures upon Nanoemulsion Fusion.
    Kertmen A; Torruella P; Coy E; Yate L; Nowaczyk G; Gapiński J; Vogt C; Toprak M; Estradé S; Peiró F; Milewski S; Jurga S; Andruszkiewicz R
    Langmuir; 2017 Oct; 33(39):10351-10365. PubMed ID: 28895402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.
    Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R
    Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite.
    Li ZJ; Wang L; Yuan LY; Xiao CL; Mei L; Zheng LR; Zhang J; Yang JH; Zhao YL; Zhu ZT; Chai ZF; Shi WQ
    J Hazard Mater; 2015 Jun; 290():26-33. PubMed ID: 25734531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes.
    Wang Y; Morin G; Ona-Nguema G; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2011 Sep; 45(17):7258-66. PubMed ID: 21809819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in the reduction potential of uranyl upon interaction with graphene oxide surfaces.
    Bliznyuk VN; Conroy NA; Xie Y; Podila R; Rao AM; Powell BA
    Phys Chem Chem Phys; 2018 Jan; 20(3):1752-1760. PubMed ID: 29266155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.