These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28338361)

  • 41. Energetic Profiles of the Yo-Yo Intermittent Recovery Tests 1 and 2.
    Kaufmann S; Hoos O; Kuehl T; Tietz T; Reim D; Fehske K; Latzel R; Beneke R
    Int J Sports Physiol Perform; 2020 Jul; 15(10):1400-1405. PubMed ID: 32659742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an air-braked ergometer.
    Withers RT; Van der Ploeg G; Finn JP
    Eur J Appl Physiol Occup Physiol; 1993; 67(2):185-91. PubMed ID: 8223527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reliability of the 3-Component Model of Aerobic, Anaerobic Lactic, and Anaerobic Alactic Energy Distribution (PCr-LA-O2) for Energetic Profiling of Continuous and Intermittent Exercise.
    Kaufmann S; Latzel R; Beneke R; Hoos O
    Int J Sports Physiol Perform; 2022 Nov; 17(11):1642-1648. PubMed ID: 36216336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MAOD Determined in a Single Supramaximal Test: a Study on the Reliability and Effects of Supramaximal Intensities.
    Zagatto AM; Bertuzzi R; Miyagi WE; Padulo J; Papoti M
    Int J Sports Med; 2016 Aug; 37(9):700-7. PubMed ID: 27176893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energy cost and cardiorespiratory demands of nunchaku exercise.
    Heller J
    J Sports Med Phys Fitness; 2000 Sep; 40(3):217-22. PubMed ID: 11125764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic Profiles of the 30-15 Intermittent Fitness Test and the Corresponding Continuous Version in Team-Sport Athletes-Elucidating the Role of Inter-Effort Recovery.
    Kaufmann S; Beneke R; Latzel R; Pfister H; Hoos O
    Int J Sports Physiol Perform; 2021 Nov; 16(11):1634-1639. PubMed ID: 33848977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energetic Profile of the Basketball Exercise Simulation Test in Junior Elite Players.
    Latzel R; Hoos O; Stier S; Kaufmann S; Fresz V; Reim D; Beneke R
    Int J Sports Physiol Perform; 2018 Jul; 13(6):810-815. PubMed ID: 29182413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energetics of kayaking at submaximal and maximal speeds.
    Zamparo P; Capelli C; Guerrini G
    Eur J Appl Physiol Occup Physiol; 1999; 80(6):542-8. PubMed ID: 10541920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The maximal accumulated oxygen deficit method: a valid and reliable measure of anaerobic capacity?
    Noordhof DA; de Koning JJ; Foster C
    Sports Med; 2010 Apr; 40(4):285-302. PubMed ID: 20364874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors of Rowing Ergometer Performance in High-Level Female Rowers.
    Bourdin M; Lacour JR; Imbert C; Messonnier LA
    Int J Sports Med; 2017 Nov; 38(13):1023-1028. PubMed ID: 28965342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of Physiological Parameters During On-Water and Ergometer Kayaking and Their Relationship to Performance in Sprint Kayak Competitions.
    Matzka M; Zinner C; Kunz P; Holmberg HC; Sperlich B
    Int J Sports Physiol Perform; 2021 Jul; 16(7):958-964. PubMed ID: 33626508
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The metabolic demands of kayaking: a review.
    Michael JS; Rooney KB; Smith R
    J Sports Sci Med; 2008 Mar; 7(1):1-7. PubMed ID: 24150127
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running.
    Zouhal H; Jabbour G; Jacob C; Duvigneau D; Botcazou M; Ben Abderrahaman A; Prioux J; Moussa E
    J Strength Cond Res; 2010 Sep; 24(9):2309-15. PubMed ID: 20703164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological responses during and following karate training in women.
    Imamura H; Yoshimura Y; Nishimura S; Nakazawa AT; Teshima K; Nishimura C; Miyamoto N
    J Sports Med Phys Fitness; 2002 Dec; 42(4):431-7. PubMed ID: 12391437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis.
    Scott CB
    J Sports Med Phys Fitness; 1997 Mar; 37(1):18-23. PubMed ID: 9190121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy System Contributions in Upper and Lower Body Wingate Tests in Highly Trained Athletes.
    Julio UF; Panissa VLG; Cury RL; Agostinho MF; Esteves JVDC; Franchini E
    Res Q Exerc Sport; 2019 Jun; 90(2):244-250. PubMed ID: 30908121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of Training Monitoring and Prescription Methods in Sprint Kayaking.
    Hogan C; Binnie MJ; Doyle M; Lester L; Peeling P
    Int J Sports Physiol Perform; 2020 May; 15(5):654-662. PubMed ID: 31743095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling of aerobic and anaerobic energy production during exhaustive exercise on a cycle ergometer.
    Chatagnon M; Busso T
    Eur J Appl Physiol; 2006 Aug; 97(6):755-60. PubMed ID: 16786356
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determining MAOD Using a Single Exhaustive Severe Intensity Test.
    Valenzuela JR; Riojas AE; McFARLIN BK; Vingren JL; Hill DW
    Int J Exerc Sci; 2020; 13(4):702-713. PubMed ID: 32509128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic rate, cardiac response, and aerobic capacity in fibromyalgia: a case-control study.
    Bardal EM; Olsen TV; Ettema G; Mork PJ
    Scand J Rheumatol; 2013; 42(5):417-20. PubMed ID: 23527918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.