BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28338424)

  • 1. Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity.
    Todorov A; Scotti C; Barbero A; Scherberich A; Papadimitropoulos A; Martin I
    Tissue Eng Part A; 2017 Jul; 23(13-14):708-715. PubMed ID: 28338424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
    Todorov A; Kreutz M; Haumer A; Scotti C; Barbero A; Bourgine PE; Scherberich A; Jaquiery C; Martin I
    Stem Cells Transl Med; 2016 Dec; 5(12):1684-1694. PubMed ID: 27460849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthotopic Bone Formation by Streamlined Engineering and Devitalization of Human Hypertrophic Cartilage.
    Pigeot S; Bourgine PE; Claude J; Scotti C; Papadimitropoulos A; Todorov A; Epple C; Peretti GM; Martin I
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33008121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinductivity of engineered cartilaginous templates devitalized by inducible apoptosis.
    Bourgine PE; Scotti C; Pigeot S; Tchang LA; Todorov A; Martin I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17426-31. PubMed ID: 25422415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
    Sheehy EJ; Mesallati T; Vinardell T; Kelly DJ
    Acta Biomater; 2015 Feb; 13():245-53. PubMed ID: 25463500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.
    Cunniffe GM; Vinardell T; Murphy JM; Thompson EM; Matsiko A; O'Brien FJ; Kelly DJ
    Acta Biomater; 2015 Sep; 23():82-90. PubMed ID: 26038199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering osteochondral constructs through spatial regulation of endochondral ossification.
    Sheehy EJ; Vinardell T; Buckley CT; Kelly DJ
    Acta Biomater; 2013 Mar; 9(3):5484-92. PubMed ID: 23159563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.
    Marsano A; Medeiros da Cunha CM; Ghanaati S; Gueven S; Centola M; Tsaryk R; Barbeck M; Stuedle C; Barbero A; Helmrich U; Schaeren S; Kirkpatrick JC; Banfi A; Martin I
    Stem Cells Transl Med; 2016 Dec; 5(12):1730-1738. PubMed ID: 27460852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.
    Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F
    Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.
    Huang RL; Guerrero J; Senn AS; Kappos EA; Liu K; Li Q; Dufrane D; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2020 Jan; 102():458-467. PubMed ID: 31783141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation.
    Freeman FE; Haugh MG; McNamara LM
    Tissue Eng Part A; 2015 Apr; 21(7-8):1320-32. PubMed ID: 25588588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction.
    Epple C; Haumer A; Ismail T; Lunger A; Scherberich A; Schaefer DJ; Martin I
    Biomaterials; 2019 Feb; 192():118-127. PubMed ID: 30448696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo.
    Freeman FE; Allen AB; Stevens HY; Guldberg RE; McNamara LM
    Stem Cell Res Ther; 2015 Nov; 6():218. PubMed ID: 26541817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration.
    Gawlitta D; Benders KE; Visser J; van der Sar AS; Kempen DH; Theyse LF; Malda J; Dhert WJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):694-703. PubMed ID: 25316202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy.
    Freeman FE; Haugh MG; McNamara LM
    J Tissue Eng Regen Med; 2016 Apr; 10(4):E250-62. PubMed ID: 23922276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model.
    Ding J; Chen B; Lv T; Liu X; Fu X; Wang Q; Yan L; Kang N; Cao Y; Xiao R
    Stem Cells Transl Med; 2016 Aug; 5(8):1079-89. PubMed ID: 27280797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth.
    Touaitahuata H; Cres G; de Rossi S; Vives V; Blangy A
    Dev Biol; 2014 Sep; 393(1):57-70. PubMed ID: 24992711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells.
    Sesia SB; Duhr R; Medeiros da Cunha C; Todorov A; Schaeren S; Padovan E; Spagnoli G; Martin I; Barbero A
    J Cell Physiol; 2015 Jun; 230(6):1258-69. PubMed ID: 25413299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells.
    Sabatino MA; Santoro R; Gueven S; Jaquiery C; Wendt DJ; Martin I; Moretti M; Barbero A
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1394-403. PubMed ID: 23225781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.