These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28338424)

  • 41. Integrated Bone Formation Through In Vivo Endochondral Ossification Using Mesenchymal Stem Cells.
    Yamazaki S; Lin Y; Marukawa E; Ikeda MA
    J Vis Exp; 2023 Jul; (197):. PubMed ID: 37522726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats.
    Geuze RE; Prins HJ; Öner FC; van der Helm YJ; Schuijff LS; Martens AC; Kruyt MC; Alblas J; Dhert WJ
    Tissue Eng Part A; 2010 Nov; 16(11):3343-51. PubMed ID: 20575656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells.
    Liu G; Shu C; Cui L; Liu W; Cao Y
    Cryobiology; 2008 Jun; 56(3):209-15. PubMed ID: 18430412
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.
    Kouba L; Bürgin J; Born G; Perale G; Schaefer DJ; Scherberich A; Pigeot S; Martin I
    Acta Biomater; 2022 Dec; 154():641-649. PubMed ID: 36261107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monocytes/Macrophages Upregulate the Hyaluronidase HYAL1 and Adapt Its Subcellular Trafficking to Promote Extracellular Residency upon Differentiation into Osteoclasts.
    Puissant E; Boonen M
    PLoS One; 2016; 11(10):e0165004. PubMed ID: 27755597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification.
    Hattori T; Müller C; Gebhard S; Bauer E; Pausch F; Schlund B; Bösl MR; Hess A; Surmann-Schmitt C; von der Mark H; de Crombrugghe B; von der Mark K
    Development; 2010 Mar; 137(6):901-11. PubMed ID: 20179096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone marrow mesenchymal stem cells form ectopic woven bone in vivo through endochondral bone formation.
    Chang SC; Tai CL; Chung HY; Lin TM; Jeng LB
    Artif Organs; 2009 Apr; 33(4):301-8. PubMed ID: 19335406
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling.
    Guihard P; Danger Y; Brounais B; David E; Brion R; Delecrin J; Richards CD; Chevalier S; Rédini F; Heymann D; Gascan H; Blanchard F
    Stem Cells; 2012 Apr; 30(4):762-72. PubMed ID: 22267310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro and in vivo effects of human monocytes and their subsets on new vessel formation.
    Czepluch FS; Bernhardt M; Kuschicke H; Gogiraju R; Schroeter MR; Riggert J; Hasenfuss G; Schäfer K
    Microcirculation; 2014 Feb; 21(2):148-58. PubMed ID: 24125396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats.
    Kruyt MC; de Bruijn JD; Wilson CE; Oner FC; van Blitterswijk CA; Verbout AJ; Dhert WJ
    Tissue Eng; 2003 Apr; 9(2):327-36. PubMed ID: 12740095
    [TBL] [Abstract][Full Text] [Related]  

  • 52. VEGF expression in mesenchymal stem cells promotes bone formation of tissue-engineered bones.
    Liu B; Li X; Liang G; Liu X
    Mol Med Rep; 2011; 4(6):1121-6. PubMed ID: 21850376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model.
    Tortelli F; Tasso R; Loiacono F; Cancedda R
    Biomaterials; 2010 Jan; 31(2):242-9. PubMed ID: 19796807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
    Bardsley K; Kwarciak A; Freeman C; Brook I; Hatton P; Crawford A
    Biomaterials; 2017 Jan; 112():313-323. PubMed ID: 27770634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation.
    Usami K; Mizuno H; Okada K; Narita Y; Aoki M; Kondo T; Mizuno D; Mase J; Nishiguchi H; Kagami H; Ueda M
    J Biomed Mater Res A; 2009 Sep; 90(3):730-41. PubMed ID: 18570318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human cartilage glycoprotein 39 (HC gp-39) mRNA expression in adult and fetal chondrocytes, osteoblasts and osteocytes by in-situ hybridization.
    Connor JR; Dodds RA; Emery JG; Kirkpatrick RB; Rosenberg M; Gowen M
    Osteoarthritis Cartilage; 2000 Mar; 8(2):87-95. PubMed ID: 10772238
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.
    Tonna S; Poulton IJ; Taykar F; Ho PW; Tonkin B; Crimeen-Irwin B; Tatarczuch L; McGregor NE; Mackie EJ; Martin TJ; Sims NA
    Development; 2016 Feb; 143(4):648-57. PubMed ID: 26755702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool.
    Aaron RK; Ciombor DM
    J Orthop Res; 1996 Jul; 14(4):582-9. PubMed ID: 8764867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyaline cartilage formation and enchondral ossification modeled with KUM5 and OP9 chondroblasts.
    Sugiki T; Uyama T; Toyoda M; Morioka H; Kume S; Miyado K; Matsumoto K; Saito H; Tsumaki N; Takahashi Y; Toyama Y; Umezawa A
    J Cell Biochem; 2007 Apr; 100(5):1240-54. PubMed ID: 17115412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different Blood-Borne Human Osteoclast Precursors Respond in Distinct Ways to IL-17A.
    Sprangers S; Schoenmaker T; Cao Y; Everts V; de Vries TJ
    J Cell Physiol; 2016 Jun; 231(6):1249-60. PubMed ID: 26491867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.