BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 28338622)

  • 1. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair.
    Knott EP; Assi M; Rao SN; Ghosh M; Pearse DD
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28338622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
    Kokkonen K; Kass DA
    Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease.
    Cheng J; Grande JP
    Exp Biol Med (Maywood); 2007 Jan; 232(1):38-51. PubMed ID: 17202584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in targeting cyclic nucleotide phosphodiesterases.
    Maurice DH; Ke H; Ahmad F; Wang Y; Chung J; Manganiello VC
    Nat Rev Drug Discov; 2014 Apr; 13(4):290-314. PubMed ID: 24687066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE; Lugnier C
    Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphodiesterase (1B, 2A, 9A and 10A) inhibitors on central nervous system cyclic nucleotide levels in rats and mice.
    Chen J; Zook D; Crickard L; Tabatabaei A
    Neurochem Int; 2019 Oct; 129():104471. PubMed ID: 31121256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic Nucleotides Signaling and Phosphodiesterase Inhibition: Defying Alzheimer's Disease.
    Sharma VK; Singh TG; Singh S
    Curr Drug Targets; 2020; 21(13):1371-1384. PubMed ID: 32718286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphodiesterase in heart and vessels: from physiology to diseases.
    Fu Q; Wang Y; Yan C; Xiang YK
    Physiol Rev; 2024 Apr; 104(2):765-834. PubMed ID: 37971403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac Cyclic Nucleotide Phosphodiesterases: Roles and Therapeutic Potential in Heart Failure.
    Preedy MEJ
    Cardiovasc Drugs Ther; 2020 Jun; 34(3):401-417. PubMed ID: 32172427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Construction and Application of a New Screening Method for Phosphodiesterase Inhibitors.
    Gao C; Wang Z; Liu X; Sun R; Ma S; Ma Z; Wang Q; Li G; Zhang HT
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemotherapeutic potential of phosphodiesterase inhibitors.
    Perry MJ; Higgs GA
    Curr Opin Chem Biol; 1998 Aug; 2(4):472-81. PubMed ID: 9736920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Phosphodiesterase-Protein-Kinase Complexes as Novel Targets for Discovery of Inhibitors with Enhanced Specificity.
    Tulsian NK; Sin VJ; Koh HL; Anand GS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34063491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cyclic nucleotide phosphodiesterase in the heart: therapeutic implications.
    Miller CL; Yan C
    J Cardiovasc Transl Res; 2010 Oct; 3(5):507-15. PubMed ID: 20632220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and molecular genetics of the phosphodiesterases (PDEs).
    Azevedo MF; Faucz FR; Bimpaki E; Horvath A; Levy I; de Alexandre RB; Ahmad F; Manganiello V; Stratakis CA
    Endocr Rev; 2014 Apr; 35(2):195-233. PubMed ID: 24311737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease.
    Xi M; Sun T; Chai S; Xie M; Chen S; Deng L; Du K; Shen R; Sun H
    Eur J Med Chem; 2022 Mar; 232():114170. PubMed ID: 35144038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphodiesterase regulation of alcohol drinking in rodents.
    Logrip ML
    Alcohol; 2015 Dec; 49(8):795-802. PubMed ID: 26095589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence.
    Wen RT; Liang JH; Zhang HT
    Adv Neurobiol; 2017; 17():413-444. PubMed ID: 28956341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease.
    Cardinale A; Fusco FR
    CNS Neurosci Ther; 2018 Apr; 24(4):319-328. PubMed ID: 29500937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome?
    Lugnier C; Meyer A; Talha S; Geny B
    Pharmacol Ther; 2020 Apr; 208():107475. PubMed ID: 31926200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research.
    Jankowska A; Świerczek A; Wyska E; Gawalska A; Bucki A; Pawłowski M; Chłoń-Rzepa G
    Curr Drug Targets; 2019; 20(1):122-143. PubMed ID: 30091414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.