These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28338685)

  • 1. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis.
    Coggins AJ; Powner MW
    Nat Chem; 2017 Apr; 9(4):310-317. PubMed ID: 28338685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hidden biochemical fossils reveal an evolutionary trajectory for glycolysis in the prebiotic era.
    Kalapos MP; de Bari L
    FEBS Lett; 2022 Aug; 596(15):1955-1968. PubMed ID: 35599367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate fluxes into alginate biosynthesis in Azotobacter vinelandii NCIB 8789: NMR investigations of the triose pools.
    Beale JM; Foster JL
    Biochemistry; 1996 Apr; 35(14):4492-501. PubMed ID: 8605199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sugar model: autocatalytic activity of the triose-ammonia reaction.
    Weber AL
    Orig Life Evol Biosph; 2007 Apr; 37(2):105-11. PubMed ID: 17225954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism.
    Jahn U; Huber H; Eisenreich W; Hügler M; Fuchs G
    J Bacteriol; 2007 Jun; 189(11):4108-19. PubMed ID: 17400748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiotic synthesis of simple sugars by an interstellar formose reaction.
    Jalbout AF
    Orig Life Evol Biosph; 2008 Dec; 38(6):489-97. PubMed ID: 18998238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions.
    Weber AL
    Orig Life Evol Biosph; 1987; 17(2):107-19. PubMed ID: 3627761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12.
    Danchin A; Dondon L; Daniel J
    Mol Gen Genet; 1984; 193(3):473-8. PubMed ID: 6369074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean.
    Keller MA; Turchyn AV; Ralser M
    Mol Syst Biol; 2014 Apr; 10(4):725. PubMed ID: 24771084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis.
    Kim DM; Swartz JR
    Biotechnol Bioeng; 2001 Aug; 74(4):309-16. PubMed ID: 11410855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-driven prebiotic synthesis of ammonia from nitrite.
    Weber AL
    Orig Life Evol Biosph; 2010 Jun; 40(3):245-52. PubMed ID: 20213158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prebiotic synthesis of aminooxazoline-5'-phosphates in water by oxidative phosphorylation.
    Fernández-García C; Grefenstette NM; Powner MW
    Chem Commun (Camb); 2017 May; 53(36):4919-4921. PubMed ID: 28401215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues.
    Tessier FJ; Monnier VM; Sayre LM; Kornfield JA
    Biochem J; 2003 Feb; 369(Pt 3):705-19. PubMed ID: 12379150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions.
    Gibard C; Bhowmik S; Karki M; Kim EK; Krishnamurthy R
    Nat Chem; 2018 Feb; 10(2):212-217. PubMed ID: 29359747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle.
    Guzman MI; Martin ST
    Astrobiology; 2009 Nov; 9(9):833-42. PubMed ID: 19968461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life as a guide to prebiotic nucleotide synthesis.
    Harrison SA; Lane N
    Nat Commun; 2018 Dec; 9(1):5176. PubMed ID: 30538225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconeogenesis from dihydroxyacetone in rat hepatocytes during the shift from a low protein, high carbohydrate to a high protein, carbohydrate-free diet.
    Azzout B; Chanez M; Bois-Joyeux B; Peret J
    J Nutr; 1984 Nov; 114(11):2167-78. PubMed ID: 6491768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sugar model: catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-l-lysine contained in a dialyzer.
    Weber AL
    Orig Life Evol Biosph; 2001 Jun; 31(3):231-40. PubMed ID: 11434102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.
    Santiago-Martínez MG; Encalada R; Lira-Silva E; Pineda E; Gallardo-Pérez JC; Reyes-García MA; Saavedra E; Moreno-Sánchez R; Marín-Hernández A; Jasso-Chávez R
    FEBS J; 2016 May; 283(10):1979-99. PubMed ID: 27000496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.