BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28338719)

  • 1. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought.
    Sosa-Valencia G; Palomar M; Covarrubias AA; Reyes JL
    J Exp Bot; 2017 Apr; 68(8):2013-2026. PubMed ID: 28338719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the function of the phasiRNA-triggering miR1514 in response to stress in legumes.
    Sosa-Valencia G; Romero-Pérez PS; Palomar VM; Covarrubias AA; Reyes JL
    Plant Signal Behav; 2017 Mar; 12(3):e1284724. PubMed ID: 28151043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.
    Wu J; Wang L; Wang S
    BMC Plant Biol; 2016 Sep; 16(1):193. PubMed ID: 27604581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.).
    Wu J; Wang L; Wang S
    Gene; 2017 Sep; 628():78-86. PubMed ID: 28711666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcriptional changes triggered by water deficit on a drought-tolerant common bean cultivar.
    Gregorio Jorge J; Villalobos-López MA; Chavarría-Alvarado KL; Ríos-Meléndez S; López-Meyer M; Arroyo-Becerra A
    BMC Plant Biol; 2020 Nov; 20(1):525. PubMed ID: 33203368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco.
    Yin F; Qin C; Gao J; Liu M; Luo X; Zhang W; Liu H; Liao X; Shen Y; Mao L; Zhang Z; Lin H; Lübberstedt T; Pan G
    Int J Mol Sci; 2015 Mar; 16(3):5714-40. PubMed ID: 25775154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional analysis of drought-induced genes in the roots of a tolerant genotype of the common bean (Phaseolus vulgaris L.).
    Recchia GH; Caldas DG; Beraldo AL; da Silva MJ; Tsai SM
    Int J Mol Sci; 2013 Mar; 14(4):7155-79. PubMed ID: 23538843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L.
    Alamillo JM; Díaz-Leal JL; Sánchez-Moran MV; Pineda M
    Plant Cell Environ; 2010 Nov; 33(11):1828-37. PubMed ID: 20545885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.
    Wang Y; Li L; Tang S; Liu J; Zhang H; Zhi H; Jia G; Diao X
    BMC Genet; 2016 Apr; 17():57. PubMed ID: 27068810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of phasiRNAs and their drought- responsiveness in Populus trichocarpa.
    Shuai P; Su Y; Liang D; Zhang Z; Xia X; Yin W
    FEBS Lett; 2016 Oct; 590(20):3616-3627. PubMed ID: 27616639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes.
    Wu J; Wang L; Li L; Wang S
    PLoS One; 2014; 9(10):e109262. PubMed ID: 25275443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells.
    Formey D; Martín-Rodríguez JÁ; Leija A; Santana O; Quinto C; Cárdenas L; Hernández G
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27271618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance.
    Huang L; Hong Y; Zhang H; Li D; Song F
    BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing.
    Formey D; Iñiguez LP; Peláez P; Li YF; Sunkar R; Sánchez F; Reyes JL; Hernández G
    BMC Genomics; 2015 Jun; 16(1):423. PubMed ID: 26059339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.
    Wei T; Deng K; Liu D; Gao Y; Liu Y; Yang M; Zhang L; Zheng X; Wang C; Song W; Chen C; Zhang Y
    Plant Cell Physiol; 2016 Aug; 57(8):1593-609. PubMed ID: 27485523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.
    Baloglu MC; Inal B; Kavas M; Unver T
    Gene; 2014 Oct; 550(1):117-22. PubMed ID: 25130909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.
    Song L; Prince S; Valliyodan B; Joshi T; Maldonado dos Santos JV; Wang J; Lin L; Wan J; Wang Y; Xu D; Nguyen HT
    BMC Genomics; 2016 Jan; 17():57. PubMed ID: 26769043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris).
    Rodriguez-Uribe L; O'Connell MA
    J Exp Bot; 2006; 57(6):1391-8. PubMed ID: 16531461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought.
    Smoczynska A; Pacak AM; Nuc P; Swida-Barteczka A; Kruszka K; Karlowski WM; Jarmolowski A; Szweykowska-Kulinska Z
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.