These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28338755)
1. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening. Blanco-Ulate B; Hopfer H; Figueroa-Balderas R; Ye Z; Rivero RM; Albacete A; Pérez-Alfocea F; Koyama R; Anderson MM; Smith RJ; Ebeler SE; Cantu D J Exp Bot; 2017 Feb; 68(5):1225-1238. PubMed ID: 28338755 [TBL] [Abstract][Full Text] [Related]
3. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
4. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
5. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons. Cauduro Girardello R; Rich V; Smith RJ; Brenneman C; Heymann H; Oberholster A J Sci Food Agric; 2020 Mar; 100(4):1436-1447. PubMed ID: 31742703 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
9. Grapevine Red Blotch-Associated Virus, an Emerging Threat to the Grapevine Industry. Sudarshana MR; Perry KL; Fuchs MF Phytopathology; 2015 Jul; 105(7):1026-32. PubMed ID: 25738551 [TBL] [Abstract][Full Text] [Related]
10. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. Deluc LG; Quilici DR; Decendit A; Grimplet J; Wheatley MD; Schlauch KA; Mérillon JM; Cushman JC; Cramer GR BMC Genomics; 2009 May; 10():212. PubMed ID: 19426499 [TBL] [Abstract][Full Text] [Related]
11. Phylogeny of Geminivirus Coat Protein Sequences and Digital PCR Aid in Identifying Spissistilus festinus as a Vector of Grapevine red blotch-associated virus. Bahder BW; Zalom FG; Jayanth M; Sudarshana MR Phytopathology; 2016 Oct; 106(10):1223-1230. PubMed ID: 27111804 [TBL] [Abstract][Full Text] [Related]
12. Grapevine Red Blotch Virus May Reduce Carbon Translocation Leading to Impaired Grape Berry Ripening. Martínez-Lüscher J; Plank CM; Brillante L; Cooper ML; Smith RJ; Al-Rwahnih M; Yu R; Oberholster A; Girardello R; Kurtural SK J Agric Food Chem; 2019 Mar; 67(9):2437-2448. PubMed ID: 30721055 [TBL] [Abstract][Full Text] [Related]
13. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2013 Dec; 13():222. PubMed ID: 24364881 [TBL] [Abstract][Full Text] [Related]
14. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
15. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
16. Investigating Grapevine Red Blotch Virus Infection in Rumbaugh AC; Durbin-Johnson B; Padhi E; Lerno L; Cauduro Girardello R; Britton M; Slupsky C; Sudarshana MR; Oberholster A Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362035 [TBL] [Abstract][Full Text] [Related]
17. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. Martínez-Esteso MJ; Vilella-Antón MT; Pedreño MÁ; Valero ML; Bru-Martínez R BMC Plant Biol; 2013 Oct; 13():167. PubMed ID: 24152288 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. Cramer GR; Ghan R; Schlauch KA; Tillett RL; Heymann H; Ferrarini A; Delledonne M; Zenoni S; Fasoli M; Pezzotti M BMC Plant Biol; 2014 Dec; 14():370. PubMed ID: 25524329 [TBL] [Abstract][Full Text] [Related]
19. Phytohormone profiles are strongly altered during induction and symptom development of the physiological ripening disorder berry shrivel in grapevine. Griesser M; Savoi S; Supapvanich S; Dobrev P; Vankova R; Forneck A Plant Mol Biol; 2020 May; 103(1-2):141-157. PubMed ID: 32072393 [TBL] [Abstract][Full Text] [Related]
20. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]