These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 28338800)

  • 1. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.
    Hölttä T; Lintunen A; Chan T; Mäkelä A; Nikinmaa E
    Tree Physiol; 2017 Jul; 37(7):851-868. PubMed ID: 28338800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assimilate transport in phloem sets conditions for leaf gas exchange.
    Nikinmaa E; Hölttä T; Hari P; Kolari P; Mäkelä A; Sevanto S; Vesala T
    Plant Cell Environ; 2013 Mar; 36(3):655-69. PubMed ID: 22934921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring optimal stomatal control under alternative hypotheses for the regulation of plant sources and sinks.
    Dewar R; Hölttä T; Salmon Y
    New Phytol; 2022 Jan; 233(2):639-654. PubMed ID: 34637543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination.
    Flexas J; Scoffoni C; Gago J; Sack L
    J Exp Bot; 2013 Oct; 64(13):3965-81. PubMed ID: 24123453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).
    Sack L; Scoffoni C
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis.
    Dewar R; Mauranen A; Mäkelä A; Hölttä T; Medlyn B; Vesala T
    New Phytol; 2018 Jan; 217(2):571-585. PubMed ID: 29086921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of stomatal conductance to simultaneous changes in two environmental factors.
    Aasamaa K; Sõber A
    Tree Physiol; 2011 Aug; 31(8):855-64. PubMed ID: 21856657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets.
    Lamour J; Davidson KJ; Ely KS; Le Moguédec G; Leakey ADB; Li Q; Serbin SP; Rogers A
    Glob Chang Biol; 2022 Jun; 28(11):3537-3556. PubMed ID: 35090072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.
    Sellin A; Niglas A; Õunapuu-Pikas E; Kupper P
    BMC Plant Biol; 2014 Mar; 14():72. PubMed ID: 24655599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal stomatal behaviour under stochastic rainfall.
    Lu Y; Duursma RA; Medlyn BE
    J Theor Biol; 2016 Apr; 394():160-171. PubMed ID: 26796317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost.
    Sperry JS; Venturas MD; Anderegg WRL; Mencuccini M; Mackay DS; Wang Y; Love DM
    Plant Cell Environ; 2017 Jun; 40(6):816-830. PubMed ID: 27764894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species.
    Liu X; Liu H; Gleason SM; Goldstein G; Zhu S; He P; Hou H; Li R; Ye Q
    Tree Physiol; 2019 Oct; 39(10):1665-1674. PubMed ID: 31314105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.
    Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY
    Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration.
    Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR
    Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.
    Katul G; Manzoni S; Palmroth S; Oren R
    Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of physiological traits involved in drought-induced mortality of woody plants.
    Mencuccini M; Minunno F; Salmon Y; Martínez-Vilalta J; Hölttä T
    New Phytol; 2015 Oct; 208(2):396-409. PubMed ID: 25988920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model.
    Wang Y; Sperry JS; Venturas MD; Trugman AT; Love DM; Anderegg WRL
    Tree Physiol; 2019 Aug; 39(8):1416-1427. PubMed ID: 30949697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.