These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 28338918)
1. Integrated miRNA and mRNA expression profiling reveals the response regulators of a susceptible tomato cultivar to early blight disease. Sarkar D; Maji RK; Dey S; Sarkar A; Ghosh Z; Kundu P DNA Res; 2017 Jun; 24(3):235-250. PubMed ID: 28338918 [TBL] [Abstract][Full Text] [Related]
2. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Luan Y; Cui J; Zhai J; Li J; Han L; Meng J Planta; 2015 Jun; 241(6):1405-16. PubMed ID: 25697288 [TBL] [Abstract][Full Text] [Related]
3. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). Cheng HY; Wang Y; Tao X; Fan YF; Dai Y; Yang H; Ma XR BMC Genomics; 2016 Jun; 17():423. PubMed ID: 27260799 [TBL] [Abstract][Full Text] [Related]
4. Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato. Liu G; Liu J; Zhang C; You X; Zhao T; Jiang J; Chen X; Zhang H; Yang H; Zhang D; Du C; Li J; Xu X Plant Mol Biol; 2018 Mar; 96(4-5):403-416. PubMed ID: 29383477 [TBL] [Abstract][Full Text] [Related]
5. The miRNA-Mediated Post-Transcriptional Regulation of Maize in Response to High Temperature. Zhang M; An P; Li H; Wang X; Zhou J; Dong P; Zhao Y; Wang Q; Li C Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30970661 [TBL] [Abstract][Full Text] [Related]
6. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes. Candar-Cakir B; Arican E; Zhang B Plant Biotechnol J; 2016 Aug; 14(8):1727-46. PubMed ID: 26857916 [TBL] [Abstract][Full Text] [Related]
7. An integrated analysis of mRNA and sRNA transcriptional profiles in tomato root: Insights on tomato wilt disease. Zhao M; Ji HM; Gao Y; Cao XX; Mao HY; Ouyang SQ; Liu P PLoS One; 2018; 13(11):e0206765. PubMed ID: 30395631 [TBL] [Abstract][Full Text] [Related]
8. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode. Koter MD; Święcicka M; Matuszkiewicz M; Pacak A; Derebecka N; Filipecki M Plant Sci; 2018 Mar; 268():18-29. PubMed ID: 29362080 [TBL] [Abstract][Full Text] [Related]
9. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Feng J; Liu S; Wang M; Lang Q; Jin C Planta; 2014 Dec; 240(6):1335-52. PubMed ID: 25204630 [TBL] [Abstract][Full Text] [Related]
10. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. Yang X; Gu X; Ding J; Yao L; Gao X; Zhang M; Meng Q; Wei S; Fu J BMC Genomics; 2022 Apr; 23(1):278. PubMed ID: 35392815 [TBL] [Abstract][Full Text] [Related]
11. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. Jin W; Wu F BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487 [TBL] [Abstract][Full Text] [Related]
13. Network analyses predict major regulators of resistance to early blight disease complex in tomato. Tominello-Ramirez CS; Muñoz Hoyos L; Oubounyt M; Stam R BMC Plant Biol; 2024 Jul; 24(1):641. PubMed ID: 38971719 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive transcriptome analysis of different potato cultivars provides insight into early blight disease caused by Alternaria solani. Sajeevan RS; Abdelmeguid I; Saripella GV; Lenman M; Alexandersson E BMC Plant Biol; 2023 Mar; 23(1):130. PubMed ID: 36882678 [TBL] [Abstract][Full Text] [Related]
15. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs. Święcicka M; Skowron W; Cieszyński P; Dąbrowska-Bronk J; Matuszkiewicz M; Filipecki M; Koter MD Plant Physiol Biochem; 2017 Apr; 113():51-55. PubMed ID: 28182967 [TBL] [Abstract][Full Text] [Related]
16. Profiling of Groundnut bud necrosis orthotospovirus-responsive microRNA and their targets in tomato based on deep sequencing. Nivedha M; Harish S; Angappan K; Karthikeyan G; Kumar KK; Murugan M; Infant Richard J J Virol Methods; 2024 Jun; 327():114924. PubMed ID: 38574773 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome Dynamics Underlying Planticine Rakoczy-Lelek R; Czernicka M; Ptaszek M; Jarecka-Boncela A; Furmanczyk EM; Kęska-Izworska K; Grzanka M; Skoczylas Ł; Kuźnik N; Smoleń S; Macko-Podgórni A; Gąska K; Chałańska A; Ambroziak K; Kardasz H Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047467 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome profiling of the response to Pyrenochaeta lycopersici in resistant tomato cultivar Mogeor and its background genotype-susceptible Moneymaker. Milc J; Bagnaresi P; Aragona M; Valente MT; Biselli C; Infantino A; Francia E; Pecchioni N Funct Integr Genomics; 2019 Sep; 19(5):811-826. PubMed ID: 31104179 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome Analysis Reveals New Insights into the Bacterial Wilt Resistance Mechanism Mediated by Silicon in Tomato. Jiang N; Fan X; Lin W; Wang G; Cai K Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30754671 [TBL] [Abstract][Full Text] [Related]
20. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum). Din M; Barozai MY Gene; 2014 Feb; 535(2):198-203. PubMed ID: 24315821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]