These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28338947)

  • 41. Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation.
    Litvak E; McCarthy HR; Pataki DE
    Tree Physiol; 2012 Apr; 32(4):373-88. PubMed ID: 22447283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in Central Australia.
    Ullmann I; Lange OL; Ziegler H; Ehleringer J; Schulze E-; Cowan IR
    Oecologia; 1985 Dec; 67(4):577-587. PubMed ID: 28311044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Curios relationship revealed by looking at long term data sets-The geometry and allometric scaling of diel xylem sap flux in tropical trees.
    Kunert N
    J Plant Physiol; 2016 Oct; 205():80-83. PubMed ID: 27632141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative Assessment of Biological Activities of Mistletoes for Cosmetic Applications:
    Choi SU; Kim ST; Han DG; Hwang YH; Lee KY; Kim DU; Cho KH; Park SY; Kim HC; Kim SB; Jang DJ
    J Cosmet Sci; 2019; 70(5):235-245. PubMed ID: 31596226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water relations of climbing ivy in a temperate forest.
    Leuzinger S; Hartmann A; Körner C
    Planta; 2011 Jun; 233(6):1087-96. PubMed ID: 21293876
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influx of double labelled glutamine into mistletoes (Viscum album) from the xylem sap of its host (Abies alba).
    Escher P; Rennenberg H
    Plant Physiol Biochem; 2006; 44(11-12):880-4. PubMed ID: 17095236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Canopy transpiration of Larix principis-rupprechtii plantation and its impact factors in diffe-rent slope locations at the south side of Liupan Mountains, China.].
    Wang YN; Cao GX; Wang YH; Xu LH; Zhang WJ; Wang XJ
    Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1503-1514. PubMed ID: 29797883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water and nutrient relationships between a mistletoe and its mangrove host under saline conditions.
    Chen L; Huang L; Li X; You S; Yang S; Zhang Y; Wang W
    Funct Plant Biol; 2013 May; 40(5):475-483. PubMed ID: 32481124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential accumulation of nutrient elements in some New Zealand mistletoes and their hosts.
    Bannister P; Strong GL; Andrew I
    Funct Plant Biol; 2002 Nov; 29(11):1309-1318. PubMed ID: 32688729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology.
    Martín-Gómez P; Serrano L; Ferrio JP
    Tree Physiol; 2017 Apr; 37(4):511-522. PubMed ID: 27974650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
    Wright TE; Tausz M; Kasel S; Volkova L; Merchant A; Bennett LT
    Tree Physiol; 2012 Mar; 32(3):280-93. PubMed ID: 22367763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of water flux through tropical forest canopy trees: do universal rules apply?
    Meinzer FC; Goldstein G; Andrade JL
    Tree Physiol; 2001 Jan; 21(1):19-26. PubMed ID: 11260820
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate and functional traits jointly mediate tree water-use strategies.
    Flo V; Martínez-Vilalta J; Mencuccini M; Granda V; Anderegg WRL; Poyatos R
    New Phytol; 2021 Jul; 231(2):617-630. PubMed ID: 33893652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Characteristics of soil moisture limitation and non-limitation in the response of sap flow to transpiration driving factors].
    Chang L; Liu MJ; Lyu JL; DU S
    Ying Yong Sheng Tai Xue Bao; 2024 Apr; 35(4):1064-1072. PubMed ID: 38884241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.
    Schuldt B; Leuschner C; Brock N; Horna V
    Tree Physiol; 2013 Feb; 33(2):161-74. PubMed ID: 23292668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests.
    Chan AM; Bowling DR
    Tree Physiol; 2017 Jul; 37(7):984-995. PubMed ID: 28549168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trees with anisohydric behavior as main drivers of nocturnal evapotranspiration in a tropical mountain rainforest.
    Raffelsbauer V; Pucha-Cofrep F; Strobl S; Knüsting J; Schorsch M; Trachte K; Scheibe R; Bräuning A; Windhorst D; Bendix J; Silva B; Beck E
    PLoS One; 2023; 18(3):e0282397. PubMed ID: 37000831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees - a comparison of xylem flow, porometer and cuvette measurements.
    Schulze E-; Čermák J; Matyssek M; Penka M; Zimmermann R; Vasícek F; Gries W; Kučera J
    Oecologia; 1985 Jul; 66(4):475-483. PubMed ID: 28310786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors].
    Zhao P; Rao X; Ma L; Cai X; Zeng X
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1149-56. PubMed ID: 17044483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.