These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 28339230)

  • 1. Properties of a Rare-Earth-Ion-Doped Waveguide at Sub-Kelvin Temperatures for Quantum Signal Processing.
    Sinclair N; Oblak D; Thiel CW; Cone RL; Tittel W
    Phys Rev Lett; 2017 Mar; 118(10):100504. PubMed ID: 28339230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tm 3+ Tm 3+ : Y3Ga5O12 materials for spectrally multiplexed quantum memories.
    Thiel CW; Sinclair N; Tittel W; Cone RL
    Phys Rev Lett; 2014 Oct; 113(16):160501. PubMed ID: 25361241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate.
    Dutta S; Goldschmidt EA; Barik S; Saha U; Waks E
    Nano Lett; 2020 Jan; 20(1):741-747. PubMed ID: 31855433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of Photon Echoes From Evanescently Coupled Rare-Earth Ions in a Planar Waveguide.
    Marzban S; Bartholomew JG; Madden S; Vu K; Sellars MJ
    Phys Rev Lett; 2015 Jul; 115(1):013601. PubMed ID: 26182097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.
    Zhong T; Kindem JM; Miyazono E; Faraon A
    Nat Commun; 2015 Sep; 6():8206. PubMed ID: 26364586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Frequency-Multiplexed Coherent Electro-optic Memory in Rare Earth Doped Nanoparticles.
    Fossati A; Liu S; Karlsson J; Ikesue A; Tallaire A; Ferrier A; Serrano D; Goldner P
    Nano Lett; 2020 Oct; 20(10):7087-7093. PubMed ID: 32845155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a rapid thermal annealing system to initiate indiffusion for fabrication of Ti:LiNbO(3) optical channel waveguides.
    Cromer DC; De Brabander GN; Boyd JT; Jackson HE; Sriram S
    Appl Opt; 1989 Jan; 28(1):33-6. PubMed ID: 20548421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control.
    Sinclair N; Saglamyurek E; Mallahzadeh H; Slater JA; George M; Ricken R; Hedges MP; Oblak D; Simon C; Sohler W; Tittel W
    Phys Rev Lett; 2014 Aug; 113(5):053603. PubMed ID: 25126920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-stoichiometric Ti-diffused LiNbO(3) strip waveguide doped with Zr(4+).
    Zhang DL; Yang XF; Zhang Q; Wong WH; Yu DY; Pun EY
    Opt Lett; 2015 Nov; 40(22):5307-10. PubMed ID: 26565861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare-earth-doped glass and LiNbO(3) waveguide lasers and optical amplifiers.
    Lallier E
    Appl Opt; 1992 Sep; 31(25):5276-82. PubMed ID: 20733706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled size reduction of rare earth doped nanoparticles for optical quantum technologies.
    Liu S; Serrano D; Fossati A; Tallaire A; Ferrier A; Goldner P
    RSC Adv; 2018 Nov; 8(65):37098-37104. PubMed ID: 35557813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of chromatic dispersions in Ti-diffused LiNbO(3) optical waveguides.
    Okamoto K; Hosaka T; Itoh H
    Opt Lett; 1988 Jan; 13(1):65-7. PubMed ID: 19741982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers.
    Lancaster DG; Gross S; Withford MJ; Monro TM
    Opt Express; 2014 Oct; 22(21):25286-94. PubMed ID: 25401562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip terahertz spectroscopic techniques for measuring mesoscopic quantum systems.
    Wood CD; Mistry D; Li LH; Cunningham JE; Linfield EH; Davies AG
    Rev Sci Instrum; 2013 Aug; 84(8):085101. PubMed ID: 24007101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High quality factor nanophotonic resonators in bulk rare-earth doped crystals.
    Zhong T; Rochman J; Kindem JM; Miyazono E; Faraon A
    Opt Express; 2016 Jan; 24(1):536-44. PubMed ID: 26832284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodically segmented waveguides in Ti:LiNbO(3).
    Nir D; Weissman Z; Ruschin S; Hardy A
    Opt Lett; 1994 Nov; 19(21):1732-4. PubMed ID: 19855637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect Engineering for Quantum Grade Rare-Earth Nanocrystals.
    Liu S; Fossati A; Serrano D; Tallaire A; Ferrier A; Goldner P
    ACS Nano; 2020 Aug; 14(8):9953-9962. PubMed ID: 32697571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical detection of a single rare-earth ion in a crystal.
    Kolesov R; Xia K; Reuter R; Stöhr R; Zappe A; Meijer J; Hemmer PR; Wrachtrup J
    Nat Commun; 2012; 3():1029. PubMed ID: 22929786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y
    Lutz T; Veissier L; Thiel CW; Woodburn PJ; Cone RL; Barclay PE; Tittel W
    Sci Technol Adv Mater; 2016; 17(1):63-70. PubMed ID: 27900060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water vapor effects on optical characteristics in Ti:LiNbO(3) channel waveguides.
    Nozawa T; Noguchi K; Miyazawa H; Kawano K
    Appl Opt; 1991 Mar; 30(9):1085-9. PubMed ID: 20582110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.