These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 28340062)
1. Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels. Azhar N; Su N; Shabala L; Shabala S Plant Cell Physiol; 2017 Apr; 58(4):802-810. PubMed ID: 28340062 [TBL] [Abstract][Full Text] [Related]
2. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Jayakannan M; Bose J; Babourina O; Rengel Z; Shabala S J Exp Bot; 2013 May; 64(8):2255-68. PubMed ID: 23580750 [TBL] [Abstract][Full Text] [Related]
3. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Liu J; Gao H; Wang X; Zheng Q; Wang C; Wang X; Wang Q Plant Biol (Stuttg); 2014 Mar; 16(2):440-50. PubMed ID: 24033882 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K(+) -permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Bose J; Shabala L; Pottosin I; Zeng F; Velarde-Buendía AM; Massart A; Poschenrieder C; Hariadi Y; Shabala S Plant Cell Environ; 2014 Mar; 37(3):589-600. PubMed ID: 23937055 [TBL] [Abstract][Full Text] [Related]
5. Regulatory roles of 24-epibrassinolide in tolerance of Acacia gerrardii Benth to salt stress. Abd Allah EF; Alqarawi AA; Hashem A; Wirth S; Egamberdieva D Bioengineered; 2018 Jan; 9(1):61-71. PubMed ID: 28696140 [TBL] [Abstract][Full Text] [Related]
6. Cell-Type-Specific H+-ATPase Activity in Root Tissues Enables K+ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress. Shabala L; Zhang J; Pottosin I; Bose J; Zhu M; Fuglsang AT; Velarde-Buendia A; Massart A; Hill CB; Roessner U; Bacic A; Wu H; Azzarello E; Pandolfi C; Zhou M; Poschenrieder C; Mancuso S; Shabala S Plant Physiol; 2016 Dec; 172(4):2445-2458. PubMed ID: 27770060 [TBL] [Abstract][Full Text] [Related]
7. 24-epibrassinolide application enhances growth and biochemical aspects of squash under salt stress conditions. Galal A Acta Biol Hung; 2018 Jun; 69(2):182-196. PubMed ID: 29888670 [TBL] [Abstract][Full Text] [Related]
8. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. Álvarez-Aragón R; Haro R; Benito B; Rodríguez-Navarro A Planta; 2016 Jan; 243(1):97-114. PubMed ID: 26345991 [TBL] [Abstract][Full Text] [Related]
9. Root proteomics reveals cucumber 24-epibrassinolide responses under Ca(NO3)2 stress. An Y; Zhou H; Zhong M; Sun J; Shu S; Shao Q; Guo S Plant Cell Rep; 2016 May; 35(5):1081-101. PubMed ID: 26931454 [TBL] [Abstract][Full Text] [Related]
10. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Lu Y; Li N; Sun J; Hou P; Jing X; Zhu H; Deng S; Han Y; Huang X; Ma X; Zhao N; Zhang Y; Shen X; Chen S Tree Physiol; 2013 Jan; 33(1):81-95. PubMed ID: 23264032 [TBL] [Abstract][Full Text] [Related]
11. Occurrence of brassinosteroids and influence of 24-epibrassinolide with brassinazole on their content in the leaves and roots of Hordeum vulgare L. cv. Golden Promise. Bajguz A; Orczyk W; Gołębiewska A; Chmur M; Piotrowska-Niczyporuk A Planta; 2019 Jan; 249(1):123-137. PubMed ID: 30594955 [TBL] [Abstract][Full Text] [Related]
12. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+ -permeable channels. Shabala S; Demidchik V; Shabala L; Cuin TA; Smith SJ; Miller AJ; Davies JM; Newman IA Plant Physiol; 2006 Aug; 141(4):1653-65. PubMed ID: 16798942 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity. Chen J; Xiong DY; Wang WH; Hu WJ; Simon M; Xiao Q; Chen J; Liu TW; Liu X; Zheng HL PLoS One; 2013; 8(8):e71543. PubMed ID: 23977070 [TBL] [Abstract][Full Text] [Related]
17. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. Soares TFSN; Dias DCFDS; Oliveira AMS; Ribeiro DM; Dias LADS Ecotoxicol Environ Saf; 2020 Apr; 193():110296. PubMed ID: 32092579 [TBL] [Abstract][Full Text] [Related]
18. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Wu H; Shabala L; Barry K; Zhou M; Shabala S Physiol Plant; 2013 Dec; 149(4):515-27. PubMed ID: 23611560 [TBL] [Abstract][Full Text] [Related]
19. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Talbi Zribi O; Abdelly C; Debez A Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779 [TBL] [Abstract][Full Text] [Related]
20. Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity. Yousfi S; Rabhi M; Hessini K; Abdelly C; Gharsalli M Plant Biol (Stuttg); 2010 Jul; 12(4):650-8. PubMed ID: 20636908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]