These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28340536)

  • 41. Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro.
    Sokolov DL; Bailey MR; Crum LA
    Ultrasound Med Biol; 2003 Jul; 29(7):1045-52. PubMed ID: 12878251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bifocal reflector for electrohydraulic lithotripters.
    Prieto FE; Loske AM
    J Endourol; 1999 Mar; 13(2):65-75. PubMed ID: 10213098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Outcomes using a fourth-generation lithotripter: a new benchmark for comparison?
    Nomikos MS; Sowter SJ; Tolley DA
    BJU Int; 2007 Dec; 100(6):1356-60. PubMed ID: 17850387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved acoustic coupling for shock wave lithotripsy.
    Neucks JS; Pishchalnikov YA; Zancanaro AJ; VonDerHaar JN; Williams JC; McAteer JA
    Urol Res; 2008 Feb; 36(1):61-6. PubMed ID: 18172634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters.
    Kronenberg P; Traxer O
    BJU Int; 2014 Aug; 114(2):261-7. PubMed ID: 24219145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation.
    Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV
    J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser.
    Marguet CG; Sung JC; Springhart WP; L'Esperance JO; Zhou S; Zhong P; Albala DM; Preminger GM
    J Urol; 2005 May; 173(5):1797-800. PubMed ID: 15821590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of the body wall on lithotripter shock waves.
    Li G; McAteer JA; Williams JC; Berwick ZC
    J Endourol; 2014 Apr; 28(4):446-52. PubMed ID: 24308532
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.
    Zwaschka TA; Ahn JS; Cunitz BW; Bailey MR; Dunmire B; Sorensen MD; Harper JD; Maxwell AD
    J Endourol; 2018 Apr; 32(4):344-349. PubMed ID: 29433329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study.
    Zhong P; Lin H; Xi X; Zhu S; Bhogte ES
    J Acoust Soc Am; 1999 Mar; 105(3):1997-2009. PubMed ID: 10089617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laboratory and clinical assessment of pneumatically driven intracorporeal lithotripsy.
    Teh CL; Zhong P; Preminger GM
    J Endourol; 1998 Apr; 12(2):163-9. PubMed ID: 9607444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Urolithiasis--a change in therapeutic methods extracorporeal shock wave lithotripsy using a Dornier kidney lithotripter HM3].
    Yamamoto K; Kishimoto T; Sakamoto W; Sugimoto T; Iimori H; Kanasawa T; Wada S; Senju M; Nakatani T; Sugimura K
    Hinyokika Kiyo; 1989 Dec; 35(12):2093-8. PubMed ID: 2618909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of focus size and intensity on stone fragmentation in SWL on a piezoelectric lithotripter.
    Veser J; Jahrreiss V; Seitz C; Özsoy M
    World J Urol; 2020 Oct; 38(10):2645-2650. PubMed ID: 31925550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shockwave frequency affects fragmentation in a kidney stone model.
    Weir MJ; Tariq N; Honey RJ
    J Endourol; 2000 Sep; 14(7):547-50. PubMed ID: 11030533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Device to Prevent Stone Fragment Migration During Percutaneous Lithotripsy: Results from an In Vitro Kidney Model.
    Antonelli JA; Beardsley H; Faddegon S; Morgan MS; Gahan JC; Pearle MS; Cadeddu JA
    J Endourol; 2016 Nov; 30(11):1239-1243. PubMed ID: 27758111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prefocal alignment improves stone comminution in shockwave lithotripsy.
    Sokolov DL; Bailey MR; Crum LA; Blomgren PM; Connors BA; Evan AP
    J Endourol; 2002 Dec; 16(10):709-15. PubMed ID: 12542872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage.
    Lokhandwalla M; Sturtevant B
    Phys Med Biol; 2000 Jul; 45(7):1923-40. PubMed ID: 10943929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.