BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 28340759)

  • 21. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.
    Yan C; Zhang J; Yao L; Xue F; Lu J; Li B; Chen W
    Food Chem; 2018 Sep; 260():208-212. PubMed ID: 29699664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Multicolor Fluorescence Nanoprobe Platform Using Two-Dimensional Metal Organic Framework Nanosheets and Double Stirring Bar Assisted Target Replacement for Multiple Bioanalytical Applications.
    Yang Q; Hong J; Wu YX; Cao Y; Wu D; Hu F; Gan N
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41506-41515. PubMed ID: 31580049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles.
    Hao L; Duan N; Wu S; Xu B; Wang Z
    Anal Bioanal Chem; 2015 Oct; 407(26):7907-15. PubMed ID: 26297462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A sensitive assay based on specific aptamer binding for the detection of Salmonella enterica serovar Typhimurium in milk samples by microchip capillary electrophoresis.
    Zhang Y; Luo F; Zhang Y; Zhu L; Li Y; Zhao S; He P; Wang Q
    J Chromatogr A; 2018 Jan; 1534():188-194. PubMed ID: 29289340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling.
    Yan Z; Gan N; Li T; Cao Y; Chen Y
    Biosens Bioelectron; 2016 Apr; 78():51-57. PubMed ID: 26594886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electrochemical aptasensor based on PEI-C
    He B; Wang S
    Mikrochim Acta; 2021 Jan; 188(1):22. PubMed ID: 33404928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy.
    Huang S; Gan N; Li T; Zhou Y; Cao Y; Dong Y
    Talanta; 2018 Mar; 179():28-36. PubMed ID: 29310232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle.
    Roushani M; Rahmati Z; Hoseini SJ; Hashemi Fath R
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110451. PubMed ID: 31472389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sensitive sandwich-type electrochemical aptasensing platform based on Ti
    Yao X; Yang L; Yang S; Shen J; Huo D; Fa H; Hou C; Yang M
    Anal Methods; 2024 Jun; 16(24):3867-3877. PubMed ID: 38828675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive assay of Escherichia coli in food samples by microchip capillary electrophoresis based on specific aptamer binding strategy.
    Zhang Y; Zhu L; He P; Zi F; Hu X; Wang Q
    Talanta; 2019 May; 197():284-290. PubMed ID: 30771937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification.
    Luan Q; Gan N; Cao Y; Li T
    J Agric Food Chem; 2017 Jul; 65(28):5731-5740. PubMed ID: 28654744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplex detection of quality indicator molecule targets in urine using programmable hairpin probes based on a simple double-T type microchip electrophoresis platform and isothermal polymerase-catalyzed target recycling.
    Zhou L; Gan N; Wu Y; Hu F; Lin J; Cao Y; Wu D
    Analyst; 2018 May; 143(11):2696-2704. PubMed ID: 29774900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Lateral Flow Immunochromatographic Strips for Micropollutant Screening Using Colorants of Aptamer-Functionalized Nanogold Particles, Part II: Experimental Verification with Aflatoxin B1 and Chloramphenicol.
    Zhang S; Zhao S; Wang S; Liu J; Dong Y
    J AOAC Int; 2018 Sep; 101(5):1408-1414. PubMed ID: 29743135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-switching fluorescence aptasensor for sensitive detection of chloramphenicol.
    Ma P; Sun Y; Khan IM; Gu Q; Yue L; Wang Z
    Mikrochim Acta; 2020 Aug; 187(9):505. PubMed ID: 32815083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification.
    He L; Shen Z; Cao Y; Li T; Wu D; Dong Y; Gan N
    Analyst; 2019 Apr; 144(8):2755-2764. PubMed ID: 30869681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A "signal-on'' aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers.
    Yan Z; Gan N; Wang D; Cao Y; Chen M; Li T; Chen Y
    Biosens Bioelectron; 2015 Dec; 74():718-24. PubMed ID: 26210469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology.
    Fang Q; Li Y; Miao X; Zhang Y; Yan J; Yu T; Liu J
    Analyst; 2019 Jun; 144(11):3649-3658. PubMed ID: 31074470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Multivalence Aptamer Probes for Amplified and Label-Free Detection of Antibiotics in Aquatic Products.
    Zhang Y; Hu Y; Deng S; Yuan Z; Li C; Lu Y; He Q; Zhou M; Deng R
    J Agric Food Chem; 2020 Feb; 68(8):2554-2561. PubMed ID: 32027503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multiple signal amplified colorimetric aptasensor for antibiotics measurement using DNAzyme labeled Fe-MIL-88-Pt as novel peroxidase mimic tags and CSDP target-triggered cycles.
    Luan Q; Xiong X; Gan N; Cao Y; Li T; Wu D; Dong Y; Hu F
    Talanta; 2018 Sep; 187():27-34. PubMed ID: 29853046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.
    Ni J; Yang W; Wang Q; Luo F; Guo L; Qiu B; Lin Z; Yang H
    Biosens Bioelectron; 2018 May; 105():182-187. PubMed ID: 29412943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.