These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28341180)

  • 1. Morphological and morphometrical maturation of ventral cochlear nucleus in human foetus.
    Mishra S; Roy TS; Wadhwa S
    J Chem Neuroanat; 2018 Nov; 93():38-47. PubMed ID: 28341180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient CD15 expression reflects stages of differentiation and maturation in the human subcortical central auditory pathway.
    Mai JK; Winking R; Ashwell KW
    J Comp Neurol; 1999 Feb; 404(2):197-211. PubMed ID: 9934994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological development of the human cochlear nucleus.
    Saini S; Kaur C; Pal I; Kumar P; Jacob TG; Thakar A; Roy KK; Roy TS
    Hear Res; 2019 Oct; 382():107784. PubMed ID: 31522073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence and distribution of three calcium binding proteins in projection neurons of the adult rat cochlear nucleus.
    Pór A; Pocsai K; Rusznák Z; Szucs G
    Brain Res; 2005 Mar; 1039(1-2):63-74. PubMed ID: 15781047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice.
    Idrizbegovic E; Salman H; Niu X; Canlon B
    Hear Res; 2006; 216-217():198-206. PubMed ID: 16874908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Morphometric development and the variability of neurons of the human auditory system: ventral cochlear nucleus and superior medial olivary nucleus].
    Nara T; Goto N; Hamano S
    No To Hattatsu; 1999 Nov; 31(6):525-30. PubMed ID: 10565189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cochlear nucleus principal cells of Meriones unguiculatus and Monodelphis domestica by use of calcium-binding protein immunolabeling.
    Bazwinsky I; Härtig W; Rübsamen R
    J Chem Neuroanat; 2008 Jan; 35(1):158-74. PubMed ID: 18065198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptophysin immunoreactivity in the cat cochlear nuclei.
    Gil-Loyzaga P; Bartolomé MV; Ibáñez A
    Histol Histopathol; 1998 Apr; 13(2):415-24. PubMed ID: 9589900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species Differences in the Organization of the Ventral Cochlear Nucleus.
    Baizer JS; Wong KM; Salvi RJ; Manohar S; Sherwood CC; Hof PR; Baker JF; Witelson SF
    Anat Rec (Hoboken); 2018 May; 301(5):862-886. PubMed ID: 29236365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.
    Kungel M; Friauf E
    Anat Embryol (Berl); 1995 May; 191(5):425-43. PubMed ID: 7625613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEP-19 immunoreactivity in the cochlear nucleus and superior olive of the cat.
    Berrebi AS; Spirou GA
    Neuroscience; 1998 Mar; 83(2):535-54. PubMed ID: 9460761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphologic and neurochemical abnormalities in the auditory brainstem of the genetically epilepsy-prone hamster (GPG/Vall).
    Fuentes-Santamaría V; Cantos R; Alvarado JC; García-Atarés N; López DE
    Epilepsia; 2005 Jul; 46(7):1027-45. PubMed ID: 16026555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP.
    Jovanovic S; Radulovic T; Coddou C; Dietz B; Nerlich J; Stojilkovic SS; Rübsamen R; Milenkovic I
    J Physiol; 2017 Feb; 595(4):1315-1337. PubMed ID: 28030754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior olivary contributions to auditory system plasticity: medial but not lateral olivocochlear neurons are the source of cochleotomy-induced GAP-43 expression in the ventral cochlear nucleus.
    Kraus KS; Illing RB
    J Comp Neurol; 2004 Jul; 475(3):374-90. PubMed ID: 15221952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.
    Howell DM; Morgan WJ; Jarjour AA; Spirou GA; Berrebi AS; Kennedy TE; Mathers PH
    J Comp Neurol; 2007 Oct; 504(5):533-49. PubMed ID: 17701984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus.
    Sharma V; Nag TC; Wadhwa S; Roy TS
    J Chem Neuroanat; 2009 Mar; 37(2):78-86. PubMed ID: 19095058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem.
    Caicedo A; d'Aldin C; Eybalin M; Puel JL
    J Comp Neurol; 1997 Feb; 378(1):1-15. PubMed ID: 9120049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear ablation in adult ferrets results in changes in insulin-like growth factor-1 and synaptophysin immunostaining in the cochlear nucleus.
    Fuentes-Santamaría V; Alvarado JC; Henkel CK; Brunso-Bechtold JK
    Neuroscience; 2007 Sep; 148(4):1033-47. PubMed ID: 17764853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative changes in calretinin immunostaining in the cochlear nuclei after unilateral cochlear removal in young ferrets.
    Fuentes-Santamaria V; Alvarado JC; Taylor AR; Brunso-Bechtold JK; Henkel CK
    J Comp Neurol; 2005 Mar; 483(4):458-75. PubMed ID: 15700274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.