BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28341292)

  • 1. Antioxidant response to metal pollution in Phragmites australis from Anzali wetland.
    Esmaeilzadeh M; Karbassi A; Bastami KD
    Mar Pollut Bull; 2017 Jun; 119(1):376-380. PubMed ID: 28341292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarkers for monitoring heavy metal pollution in the Anzali Wetland.
    Esmaeilzadeh M; Tavakol M; Mohseni F; Mahmoudi M; Nguyen UP; Fattahi M
    Mar Pollut Bull; 2023 Nov; 196():115599. PubMed ID: 37776744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis.
    Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F
    Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal contamination and its ecological risk assessment in the surface sediments of Anzali wetland, Caspian Sea.
    Jamshidi S; Bastami KD
    Mar Pollut Bull; 2016 Dec; 113(1-2):559-565. PubMed ID: 27587235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetland plants as indicators of heavy metal contamination.
    Phillips DP; Human LRD; Adams JB
    Mar Pollut Bull; 2015 Mar; 92(1-2):227-232. PubMed ID: 25599629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of heavy metal stress on emerging plants community constructions in wetland.
    Peng H; Geng W; Yong-quan W; Mao-teng L; Jun X; Long-jiang Y
    Water Sci Technol; 2010; 62(10):2459-66. PubMed ID: 21076234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya.
    Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM
    Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals in selected tissues and histopathological changes in liver and kidney of common moorhen (Gallinula chloropus) from Anzali Wetland, the south Caspian Sea, Iran.
    Salamat N; Etemadi-Deylami E; Movahedinia A; Mohammadi Y
    Ecotoxicol Environ Saf; 2014 Dec; 110():298-307. PubMed ID: 25285772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contamination and ecological risk assessment of trace elements in sediments of the Anzali Wetland, Northern Iran.
    Esmaeilzadeh M; Mahmoudpuor E; Haghighat S; Esmaeilzadeh S; Aliani H; Yazdanfar N
    Water Sci Technol; 2021 Nov; 84(9):2578-2590. PubMed ID: 34810332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China.
    Sun Z; Li J; He T; Ren P; Zhu H; Gao H; Tian L; Hu X
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23080-23095. PubMed ID: 28825222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant response of Phragmites australis to Cu and Cd contamination.
    Rocha AC; Almeida CM; Basto MC; Vasconcelos MT
    Ecotoxicol Environ Saf; 2014 Nov; 109():152-60. PubMed ID: 25193786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils.
    Minkina T; Fedorenko G; Nevidomskaya D; Fedorenko A; Chaplygin V; Mandzhieva S
    Sci Total Environ; 2018 Sep; 636():392-401. PubMed ID: 29709856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.
    Klink A
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal contamination in a riparian wetland: Distribution, fractionation and plant uptake.
    Wang Z; Hou L; Liu Y; Wang Y; Ma LQ
    Chemosphere; 2018 Jun; 200():587-593. PubMed ID: 29505931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the
    Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P
    Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components.
    Leung HM; Duzgoren-Aydin NS; Au CK; Krupanidhi S; Fung KY; Cheung KC; Wong YK; Peng XL; Ye ZH; Yung KK; Tsui MT
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9079-9088. PubMed ID: 27164879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal distribution in an urban wetland impacted by combined sewer overflow.
    Rouff AA; Eaton TT; Lanzirotti A
    Chemosphere; 2013 Nov; 93(9):2159-64. PubMed ID: 24012138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment.
    Bonanno G; Borg JA; Di Martino V
    Sci Total Environ; 2017 Jan; 576():796-806. PubMed ID: 27810764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals in wetland plants and soil of Lake Taihu, China.
    Yang H; Shen Z; Zhu S; Wang W
    Environ Toxicol Chem; 2008 Jan; 27(1):38-42. PubMed ID: 18092866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.