BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 28341312)

  • 1. Evaluation of methods for the assessment of attention while driving.
    Kircher K; Ahlstrom C
    Accid Anal Prev; 2018 May; 114():40-47. PubMed ID: 28341312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing drivers' visual attention at Junctions in Real and Simulated Environments.
    Robbins CJ; Allen HA; Chapman P
    Appl Ergon; 2019 Oct; 80():89-101. PubMed ID: 31280814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What determines the take-over time? An integrated model approach of driver take-over after automated driving.
    Zeeb K; Buchner A; Schrauf M
    Accid Anal Prev; 2015 May; 78():212-221. PubMed ID: 25794922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drivers' Attention Strategies before Eyes-off-Road in Different Traffic Scenarios: Adaptation and Anticipation.
    Liu Z; Yuan W; Ma Y
    Int J Environ Res Public Health; 2021 Apr; 18(7):. PubMed ID: 33918239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver's visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers' eye movements in day, night and rain driving.
    Konstantopoulos P; Chapman P; Crundall D
    Accid Anal Prev; 2010 May; 42(3):827-34. PubMed ID: 20380909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional Demand as a Function of Contextual Factors in Different Traffic Scenarios.
    Liu Z; Ahlström C; Forsman Å; Kircher K
    Hum Factors; 2020 Nov; 62(7):1171-1189. PubMed ID: 31424969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of brief visual interruption tasks on drivers' ability to resume their visual search for a pre-cued hazard.
    Borowsky A; Horrey WJ; Liang Y; Garabet A; Simmons L; Fisher DL
    Accid Anal Prev; 2016 Aug; 93():207-216. PubMed ID: 27209155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occlusion as a measure for visual workload: an overview of TNO occlusion research in car driving.
    van der Horst R
    Appl Ergon; 2004 May; 35(3):189-96. PubMed ID: 15145281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of bus drivers reaction to simulated traffic collision situations - eye-tracking studies.
    Bortkiewicz A; Gadzicka E; Siedlecka J; Kosobudzki M; Dania M; Szymczak W; Jóźwiak Z; Szyjkowska A; Viebig P; Pas-Wyroślak A; Makowiec-Dąbrowska T; Kapitaniak B; Hickman JS
    Int J Occup Med Environ Health; 2019 Apr; 32(2):161-174. PubMed ID: 30575822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards unpacking older drivers' visual-motor coordination: A gaze-based integrated driving assessment.
    Sun QC; Xia JC; He J; Foster J; Falkmer T; Lee H
    Accid Anal Prev; 2018 Apr; 113():85-96. PubMed ID: 29407672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expert Drivers' Prospective Thinking-Aloud to Enhance Automated Driving Technologies - Investigating Uncertainty and Anticipation in Traffic.
    Grahn H; Kujala T; Silvennoinen J; Leppänen A; Saariluoma P
    Accid Anal Prev; 2020 Oct; 146():105717. PubMed ID: 32798781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating driver eye glance behavior and secondary task engagement while using driving automation systems.
    Noble AM; Miles M; Perez MA; Guo F; Klauer SG
    Accid Anal Prev; 2021 Mar; 151():105959. PubMed ID: 33385962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of automation trust in drivers' visual distraction during automation.
    Zhang Y; Ma J; Pan C; Chang R
    PLoS One; 2021; 16(9):e0257201. PubMed ID: 34520500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
    Xiong H; Bao S; Sayer J; Kato K
    J Safety Res; 2015 Sep; 54():89-93. PubMed ID: 26403907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relationship between occlusion times and in-car glance durations in simulated driving.
    Grahn H; Kujala T; Taipalus T; Lee J; Lee JD
    Accid Anal Prev; 2023 Mar; 182():106955. PubMed ID: 36630858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. This Is Your Brain on Autopilot: Neural Indices of Driver Workload and Engagement During Partial Vehicle Automation.
    McDonnell AS; Simmons TG; Erickson GG; Lohani M; Cooper JM; Strayer DL
    Hum Factors; 2023 Nov; 65(7):1435-1450. PubMed ID: 34414813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual attention outperforms visual-perceptual parameters required by law as an indicator of on-road driving performance.
    Grundler W; Strasburger H
    PLoS One; 2020; 15(8):e0236147. PubMed ID: 32797082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.