These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28341558)

  • 1. Biomethane: The energy storage, platform chemical and greenhouse gas mitigation target.
    Bagi Z; Ács N; Böjti T; Kakuk B; Rákhely G; Strang O; Szuhaj M; Wirth R; Kovács KL
    Anaerobe; 2017 Aug; 46():13-22. PubMed ID: 28341558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mini review: Update on bioaugmentation in anaerobic processes for biogas production.
    Nzila A
    Anaerobe; 2017 Aug; 46():3-12. PubMed ID: 27887952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-methane from an-aerobic digestion using activated carbon adsorption.
    Farooq M; Bell AH; Almustapha MN; Andresen JM
    Anaerobe; 2017 Aug; 46():33-40. PubMed ID: 28483497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
    Pucker J; Jungmeier G; Siegl S; Pötsch EM
    Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency and biotechnological aspects of biogas production from microalgal substrates.
    Klassen V; Blifernez-Klassen O; Wobbe L; Schlüter A; Kruse O; Mussgnug JH
    J Biotechnol; 2016 Sep; 234():7-26. PubMed ID: 27449486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.
    Weimar MR; Cheung J; Dey D; McSweeney C; Morrison M; Kobayashi Y; Whitman WB; Carbone V; Schofield LR; Ronimus RS; Cook GM
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.
    Patra AK; Saxena J
    Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes.
    Salomoni C; Caputo A; Bonoli M; Francioso O; Rodriguez-Estrada MT; Palenzona D
    Bioresour Technol; 2011 Jun; 102(11):6443-8. PubMed ID: 21498069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.
    Xia A; Cheng J; Murphy JD
    Biotechnol Adv; 2016; 34(5):451-472. PubMed ID: 26724182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J; Martin C; Morgavi DP
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.
    Bajón Fernández Y; Soares A; Villa R; Vale P; Cartmell E
    Bioresour Technol; 2014 May; 159():1-7. PubMed ID: 24632434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand.
    Dussadee N; Reansuwan K; Ramaraj R
    Bioresour Technol; 2014 Mar; 155():438-41. PubMed ID: 24472747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological hydrogen methanation systems - an overview of design and efficiency.
    Rusmanis D; O'Shea R; Wall DM; Murphy JD
    Bioengineered; 2019 Dec; 10(1):604-634. PubMed ID: 31679461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.
    Luo G; Johansson S; Boe K; Xie L; Zhou Q; Angelidaki I
    Biotechnol Bioeng; 2012 Apr; 109(4):1088-94. PubMed ID: 22068262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bioenergy production from waste: examples of biomethane and biohydrogen].
    Aceves-Lara CA; Trably E; Bastidas-Oyenadel JR; Ramirez I; Latrille E; Steyer JP
    J Soc Biol; 2008; 202(3):177-89. PubMed ID: 18980740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.
    Rittmann SK
    Adv Biochem Eng Biotechnol; 2015; 151():117-35. PubMed ID: 26337846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.
    Gniese C; Bombach P; Rakoczy J; Hoth N; Schlömann M; Richnow HH; Krüger M
    Adv Biochem Eng Biotechnol; 2014; 142():95-121. PubMed ID: 24311044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.