These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28341562)

  • 1. Deformable Discoidal Polymeric Nanoconstructs for the Precise Delivery of Therapeutic and Imaging Agents.
    Palange AL; Palomba R; Rizzuti IF; Ferreira M; Decuzzi P
    Mol Ther; 2017 Jul; 25(7):1514-1521. PubMed ID: 28341562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft Discoidal Polymeric Nanoconstructs Resist Macrophage Uptake and Enhance Vascular Targeting in Tumors.
    Key J; Palange AL; Gentile F; Aryal S; Stigliano C; Di Mascolo D; De Rosa E; Cho M; Lee Y; Singh J; Decuzzi P
    ACS Nano; 2015 Dec; 9(12):11628-41. PubMed ID: 26488177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Phagocytic Cell Sequestration by Tailoring Nanoconstruct Softness.
    Palomba R; Palange AL; Rizzuti IF; Ferreira M; Cervadoro A; Barbato MG; Canale C; Decuzzi P
    ACS Nano; 2018 Feb; 12(2):1433-1444. PubMed ID: 29314819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating angiogenesis with integrin-targeted nanomedicines.
    Duro-Castano A; Gallon E; Decker C; Vicent MJ
    Adv Drug Deliv Rev; 2017 Sep; 119():101-119. PubMed ID: 28502767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PRINT: a novel platform toward shape and size specific nanoparticle theranostics.
    Perry JL; Herlihy KP; Napier ME; Desimone JM
    Acc Chem Res; 2011 Oct; 44(10):990-8. PubMed ID: 21809808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-specific microfabricated particles for biomedical applications: a review.
    Moore TL; Cook AB; Bellotti E; Palomba R; Manghnani P; Spanò R; Brahmachari S; Di Francesco M; Palange AL; Di Mascolo D; Decuzzi P
    Drug Deliv Transl Res; 2022 Aug; 12(8):2019-2037. PubMed ID: 35284984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy.
    Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C
    Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines.
    Battistella C; Klok HA
    Macromol Biosci; 2017 Oct; 17(10):. PubMed ID: 28444959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting toxicity and efficacy of polymeric nanomedicines.
    Igarashi E
    Toxicol Appl Pharmacol; 2008 May; 229(1):121-34. PubMed ID: 18355886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?
    Qu J; Zhang L; Chen Z; Mao G; Gao Z; Lai X; Zhu X; Zhu J
    Drug Deliv; 2016 Nov; 23(9):3408-3416. PubMed ID: 27181462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape.
    Daum N; Tscheka C; Neumeyer A; Schneider M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(1):52-65. PubMed ID: 22140017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric nanomedicines as a promising vehicle for solid tumor therapy and targeting.
    Gupta M; Agrawal GP; Vyas SP
    Curr Mol Med; 2013 Jan; 13(1):179-204. PubMed ID: 22834834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A holistic approach to targeting disease with polymeric nanoparticles.
    Cheng CJ; Tietjen GT; Saucier-Sawyer JK; Saltzman WM
    Nat Rev Drug Discov; 2015 Apr; 14(4):239-47. PubMed ID: 25598505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic efficacy of nanomedicines for prostate cancer: An update.
    Lakshmanan VK
    Investig Clin Urol; 2016 Jan; 57(1):21-9. PubMed ID: 26966723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A permeable on-chip microvasculature for assessing the transport of macromolecules and polymeric nanoconstructs.
    Barbato MG; Pereira RC; Mollica H; Palange A; Ferreira M; Decuzzi P
    J Colloid Interface Sci; 2021 Jul; 594():409-423. PubMed ID: 33774397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Targeting of Cancers with Nanotherapeutics.
    Foster C; Watson A; Kaplinsky J; Kamaly N
    Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
    Jiang W; Huang Y; An Y; Kim BY
    ACS Nano; 2015 Sep; 9(9):8689-96. PubMed ID: 26212564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.