BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28341934)

  • 1. Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis.
    Lackner T; Thiel HJ; Tautz N
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1510-5. PubMed ID: 16432213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus.
    Lackner T; Müller A; Pankraz A; Becher P; Thiel HJ; Gorbalenya AE; Tautz N
    J Virol; 2004 Oct; 78(19):10765-75. PubMed ID: 15367643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. eEF1A Interacts with the NS5A Protein and Inhibits the Growth of Classical Swine Fever Virus.
    Li S; Feng S; Wang JH; He WR; Qin HY; Dong H; Li LF; Yu SX; Li Y; Qiu HJ
    Viruses; 2015 Aug; 7(8):4563-81. PubMed ID: 26266418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitophagy induced by classical swine fever virus nonstructural protein 5A promotes viral replication.
    Chengcheng Z; Xiuling W; Jiahao S; Mengjiao G; Xiaorong Z; Yantao W
    Virus Res; 2022 Oct; 320():198886. PubMed ID: 35948130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKM2 induces mitophagy through the AMPK-mTOR pathway promoting CSFV proliferation.
    Liu X; Yan Q; Liu X; Wei W; Zou L; Zhao F; Zeng S; Yi L; Ding H; Zhao M; Chen J; Fan S
    J Virol; 2024 Mar; 98(3):e0175123. PubMed ID: 38319105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N
    Han X; Xu H; Weng Y; Chen R; Xu J; Cao T; Sun R; Shan Y; He F; Fang W; Li X
    Virus Res; 2024 Jan; 339():199280. PubMed ID: 37995963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porcine low-density lipoprotein receptor plays an important role in classical swine fever virus infection.
    Leveringhaus E; Poljakovic R; Herrmann G; Roman-Sosa G; Becher P; Postel A
    Emerg Microbes Infect; 2024 Dec; 13(1):2327385. PubMed ID: 38514916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exosomes secreted by CSFV-infected cells evade neutralizing antibody to activate innate immune responses and establish productive infection in recipient cells.
    Bao X; Zhuang T; Xu Y; Chen L; Feng L; Yao H
    Vet Microbiol; 2024 May; 292():110062. PubMed ID: 38518631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical swine fever virus non-structural protein 4A recruits dihydroorotate dehydrogenase to facilitate viral replication.
    Zhao B-q; Chen J; Chen J-X; Cheng Y; Zhou J-f; Bai J-s; Mao D-y; Zhou B
    J Virol; 2024 May; ():e0049424. PubMed ID: 38757985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rab5 Enhances Classical Swine Fever Virus Proliferation and Interacts with Viral NS4B Protein to Facilitate Formation of NS4B Related Complex.
    Lin J; Wang C; Zhang L; Wang T; Zhang J; Liang W; Li C; Qian G; Ouyang Y; Guo K; Zhang Y
    Front Microbiol; 2017; 8():1468. PubMed ID: 28848503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recombinant classical swine fever virus stably expresses a marker gene.
    Moser C; Tratschin JD; Hofmann MA
    J Virol; 1998 Jun; 72(6):5318-22. PubMed ID: 9573312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavivirus replication complex assembly revealed by DNAJC14 functional mapping.
    Yi Z; Yuan Z; Rice CM; MacDonald MR
    J Virol; 2012 Nov; 86(21):11815-32. PubMed ID: 22915803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Classical Swine Fever Virus Strategies.
    Fan J; Liao Y; Zhang M; Liu C; Li Z; Li Y; Li X; Wu K; Yi L; Ding H; Zhao M; Fan S; Chen J
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33917361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical Swine Fever in China-An Update Minireview.
    Zhou B
    Front Vet Sci; 2019; 6():187. PubMed ID: 31249837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus.
    Guo K; Li H; Tan X; Wu M; Lv Q; Liu W; Zhang Y
    Virus Genes; 2017 Jun; 53(3):426-433. PubMed ID: 28341934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host.
    Gallei A; Blome S; Gilgenbach S; Tautz N; Moennig V; Becher P
    J Virol; 2008 Oct; 82(19):9717-29. PubMed ID: 18653456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity.
    Li LF; Yu J; Li Y; Wang J; Li S; Zhang L; Xia SL; Yang Q; Wang X; Yu S; Luo Y; Sun Y; Zhu Y; Munir M; Qiu HJ
    J Virol; 2016 May; 90(9):4412-4426. PubMed ID: 26889038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Critical Requirements for Classical Swine Fever Virus NS2-3-Independent Virion Formation.
    Dubrau D; Schwindt S; Klemens O; Bischoff H; Tautz N
    J Virol; 2019 Sep; 93(18):. PubMed ID: 31292243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaches to define the viral genetic basis of classical swine fever virus virulence.
    Leifer I; Ruggli N; Blome S
    Virology; 2013 Apr; 438(2):51-5. PubMed ID: 23415391
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.