These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28342057)

  • 1. Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation.
    Albisa A; Piacentini E; Sebastian V; Arruebo M; Santamaria J; Giorno L
    Pharm Res; 2017 Jun; 34(6):1296-1308. PubMed ID: 28342057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-Articular Formulation of GE11-PLGA Conjugate-Based NPs for Dexamethasone Selective Targeting-In Vitro Evaluation.
    Chiesa E; Pisani S; Colzani B; Dorati R; Conti B; Modena T; Braekmans K; Genta I
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30082640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic nanoprecipitation of PEGylated PLGA nanoparticles with rapamycin and performance evaluation.
    Guo J; Dai W; Wu W; Zhuang S; Zhang H; Cen L
    J Biomater Sci Polym Ed; 2024 Jun; 35(8):1197-1213. PubMed ID: 38421916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric nanoparticles delivery circumvents bacterial resistance to ciprofloxacin.
    Ghawanmeh AA
    Daru; 2024 Jun; 32(1):455-459. PubMed ID: 38097860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic, Spatial and Methodological Considerations for the Manufacturing of Therapeutic Polymer Nanoparticles.
    Maslanka Figueroa S; Fleischmann D; Beck S; Goepferich A
    Pharm Res; 2020 Feb; 37(3):59. PubMed ID: 32095934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flash nanoprecipitation: particle structure and stability.
    Pustulka KM; Wohl AR; Lee HS; Michel AR; Han J; Hoye TR; McCormick AV; Panyam J; Macosko CW
    Mol Pharm; 2013 Nov; 10(11):4367-77. PubMed ID: 24053447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology.
    Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L
    PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the preparation of zein nanoparticles by continuous membrane nanoprecipitation.
    Condello A; Piacentini E; Giorno L
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130935. PubMed ID: 38493815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles.
    Peltonen L; Aitta J; Hyvönen S; Karjalainen M; Hirvonen J
    AAPS PharmSciTech; 2004 Mar; 5(1):E16. PubMed ID: 15198537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of tunable, high-molecular-weight polymeric nanoparticles
    Zhao S; Huang PH; Zhang H; Rich J; Bachman H; Ye J; Zhang W; Chen C; Xie Z; Tian Z; Kang P; Fu H; Huang TJ
    Lab Chip; 2021 Jun; 21(12):2453-2463. PubMed ID: 33978043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated and Continuous Production of Polymeric Nanoparticles.
    Bovone G; Steiner F; Guzzi EA; Tibbitt MW
    Front Bioeng Biotechnol; 2019; 7():423. PubMed ID: 31921826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of protein-loaded nanoparticles based on poly(succinimide)-oleylamine for sustained protein release: a two-step nanoprecipitation method.
    Chen X; Moonshi SS; Nguyen NT; Ta HT
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37863070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drying-Induced Flash Nanoprecipitation in a Sessile Drop: A Route to Synthesize Polymeric Nanoparticles.
    Manohar A; M S; Basavaraj MG; Sudhakar S; Mani E
    Langmuir; 2024 Jul; 40(26):13613-13621. PubMed ID: 38896068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers.
    Champion JA; Katare YK; Mitragotri S
    J Control Release; 2007 Aug; 121(1-2):3-9. PubMed ID: 17544538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a systematic and quantitative approach to generate new insights into drug loading of PLGA nanoparticles using nanoprecipitation.
    Hamdallah SI; Zoqlam R; Yang B; Campbell A; Booth R; Booth J; Belton P; Qi S
    Nanoscale Adv; 2024 Jun; 6(12):3188-3198. PubMed ID: 38868816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications.
    Tammaro O; Costagliola di Polidoro A; Romano E; Netti PA; Torino E
    Sci Rep; 2020 Apr; 10(1):6028. PubMed ID: 32265496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Technology for the Production of Hybrid Nanomedicines.
    Ottonelli I; Duskey JT; Rinaldi A; Grazioli MV; Parmeggiani I; Vandelli MA; Wang LZ; Prud'homme RK; Tosi G; Ruozi B
    Pharmaceutics; 2021 Sep; 13(9):. PubMed ID: 34575571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and
    Maphanao P; Phothikul Y; Choodet C; Puangmali T; Katewongsa K; Pinlaor S; Thanan R; Yordpratum U; Sakonsinsiri C
    RSC Adv; 2024 Aug; 14(34):24828-24837. PubMed ID: 39119279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells.
    Caballero-Florán IH; Cortés H; Borbolla-Jiménez FV; Florán-Hernández CD; Del Prado-Audelo ML; Magaña JJ; Florán B; Leyva-Gómez G
    Pharmaceutics; 2023 May; 15(6):. PubMed ID: 37376043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide-
    Lamch Ł; Wilk KA; Dékány I; Deák Á; Hornok V; Janovák L
    Langmuir; 2022 May; 38(18):5404-5417. PubMed ID: 35442685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.