These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 28342084)
1. The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Giacoppo S; Bramanti P; Mazzon E Arch Immunol Ther Exp (Warsz); 2017 Oct; 65(5):363-379. PubMed ID: 28342084 [TBL] [Abstract][Full Text] [Related]
2. A focus on allogeneic mesenchymal stromal cells as a versatile therapeutic tool for treating multiple sclerosis. Shokati A; Naser Moghadasi A; Nikbakht M; Sahraian MA; Mousavi SA; Ai J Stem Cell Res Ther; 2021 Jul; 12(1):400. PubMed ID: 34256857 [TBL] [Abstract][Full Text] [Related]
3. The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Mansoor SR; Zabihi E; Ghasemi-Kasman M Life Sci; 2019 Oct; 235():116830. PubMed ID: 31487529 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Holan V; Trosan P; Cejka C; Javorkova E; Zajicova A; Hermankova B; Chudickova M; Cejkova J Stem Cells Transl Med; 2015 Sep; 4(9):1052-63. PubMed ID: 26185258 [TBL] [Abstract][Full Text] [Related]
5. Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Payne NL; Sun G; McDonald C; Layton D; Moussa L; Emerson-Webber A; Veron N; Siatskas C; Herszfeld D; Price J; Bernard CC Cell Transplant; 2013; 22(8):1409-25. PubMed ID: 23057962 [TBL] [Abstract][Full Text] [Related]
6. Beneficial effects of bone marrow-derived mesenchymal stem cell transplantation in a non-immune model of demyelination. El-Akabawy G; Rashed LA Ann Anat; 2015 Mar; 198():11-20. PubMed ID: 25660362 [TBL] [Abstract][Full Text] [Related]
7. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. Karussis D; Kassis I; Kurkalli BG; Slavin S J Neurol Sci; 2008 Feb; 265(1-2):131-5. PubMed ID: 17610906 [TBL] [Abstract][Full Text] [Related]
8. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Roubelakis MG; Pappa KI; Bitsika V; Zagoura D; Vlahou A; Papadaki HA; Antsaklis A; Anagnou NP Stem Cells Dev; 2007 Dec; 16(6):931-52. PubMed ID: 18047393 [TBL] [Abstract][Full Text] [Related]
10. Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Harris VK; Vyshkina T; Sadiq SA Cytotherapy; 2016 Dec; 18(12):1476-1482. PubMed ID: 27727015 [TBL] [Abstract][Full Text] [Related]
11. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Gharibi T; Ahmadi M; Seyfizadeh N; Jadidi-Niaragh F; Yousefi M Cell Immunol; 2015 Feb; 293(2):113-21. PubMed ID: 25596473 [TBL] [Abstract][Full Text] [Related]
12. Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. de Oliveira GL; de Lima KW; Colombini AM; Pinheiro DG; Panepucci RA; Palma PV; Brum DG; Covas DT; Simões BP; de Oliveira MC; Donadi EA; Malmegrim KC Cell Transplant; 2015; 24(2):151-65. PubMed ID: 24256874 [TBL] [Abstract][Full Text] [Related]
13. Clinical Trials With Mesenchymal Stem Cells: An Update. Squillaro T; Peluso G; Galderisi U Cell Transplant; 2016; 25(5):829-48. PubMed ID: 26423725 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Wang Q; Yang Q; Wang Z; Tong H; Ma L; Zhang Y; Shan F; Meng Y; Yuan Z Hum Vaccin Immunother; 2016; 12(1):85-96. PubMed ID: 26186552 [TBL] [Abstract][Full Text] [Related]
15. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Stanko P; Kaiserova K; Altanerova V; Altaner C Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Sep; 158(3):373-7. PubMed ID: 24145770 [TBL] [Abstract][Full Text] [Related]
16. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Abumaree MH; Abomaray FM; Alshabibi MA; AlAskar AS; Kalionis B Placenta; 2017 Nov; 59():87-95. PubMed ID: 28411943 [TBL] [Abstract][Full Text] [Related]
17. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Heo JS; Choi Y; Kim HS; Kim HO Int J Mol Med; 2016 Jan; 37(1):115-25. PubMed ID: 26719857 [TBL] [Abstract][Full Text] [Related]
18. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Wang X; Kimbrel EA; Ijichi K; Paul D; Lazorchak AS; Chu J; Kouris NA; Yavanian GJ; Lu SJ; Pachter JS; Crocker SJ; Lanza R; Xu RH Stem Cell Reports; 2014 Jul; 3(1):115-30. PubMed ID: 25068126 [TBL] [Abstract][Full Text] [Related]
19. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Radtke CL; Nino-Fong R; Esparza Gonzalez BP; Stryhn H; McDuffee LA Am J Vet Res; 2013 May; 74(5):790-800. PubMed ID: 23627394 [TBL] [Abstract][Full Text] [Related]
20. A strategy for enhancing the engraftment of human hematopoietic stem cells in NOD/SCID mice. Lee SH; Kim DS; Lee MW; Noh YH; Jang IK; Kim DH; Yang HM; Kim SJ; Choi SJ; Oh W; Yang YS; Chueh HW; Son MH; Jung HL; Yoo KH; Sung KW; Koo HH Ann Hematol; 2013 Dec; 92(12):1595-602. PubMed ID: 23835655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]