These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 28342308)
1. Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures. Kundu S; Dai W; Chen Y; Ma L; Yue Y; Sinyukov AM; Liang H J Colloid Interface Sci; 2017 Jul; 498():248-262. PubMed ID: 28342308 [TBL] [Abstract][Full Text] [Related]
2. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies. Anantharaj S; Sakthikumar K; Elangovan A; Ravi G; Karthik T; Kundu S J Colloid Interface Sci; 2016 Dec; 483():360-373. PubMed ID: 27571687 [TBL] [Abstract][Full Text] [Related]
3. Enhanced catalytic and SERS activities of CTAB stabilized interconnected osmium nanoclusters. Ede SR; Nithiyanantham U; Kundu S Phys Chem Chem Phys; 2014 Nov; 16(41):22723-34. PubMed ID: 25234579 [TBL] [Abstract][Full Text] [Related]
4. Morphology dependent catalysis and surface enhanced Raman scattering (SERS) studies using Pd nanostructures in DNA, CTAB and PVA scaffolds. Kundu S; Yi SI; Ma L; Chen Y; Dai W; Sinyukov AM; Liang H Dalton Trans; 2017 Jul; 46(29):9678-9691. PubMed ID: 28713887 [TBL] [Abstract][Full Text] [Related]
5. Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. Rycenga M; Kim MH; Camargo PH; Cobley C; Li ZY; Xia Y J Phys Chem A; 2009 Apr; 113(16):3932-9. PubMed ID: 19175302 [TBL] [Abstract][Full Text] [Related]
6. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
7. Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates. Li JM; Ma WF; Wei C; You LJ; Guo J; Hu J; Wang CC Langmuir; 2011 Dec; 27(23):14539-44. PubMed ID: 22011076 [TBL] [Abstract][Full Text] [Related]
8. Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Shen XS; Wang GZ; Hong X; Zhu W Phys Chem Chem Phys; 2009 Sep; 11(34):7450-4. PubMed ID: 19690718 [TBL] [Abstract][Full Text] [Related]
9. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing. Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617 [TBL] [Abstract][Full Text] [Related]
10. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
11. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone). Pinkhasova P; Yang L; Zhang Y; Sukhishvili S; Du H Langmuir; 2012 Feb; 28(5):2529-35. PubMed ID: 22225536 [TBL] [Abstract][Full Text] [Related]
12. Optical properties of dopamine molecules with silver nanoparticles as surface-enhanced raman scattering (SERS) substrates at different pH conditions. Bu Y; Lee SW J Nanosci Nanotechnol; 2013 Sep; 13(9):5992-6. PubMed ID: 24205587 [TBL] [Abstract][Full Text] [Related]
13. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Zhang L; Gong X; Bao Y; Zhao Y; Xi M; Jiang C; Fong H Langmuir; 2012 Oct; 28(40):14433-40. PubMed ID: 22974488 [TBL] [Abstract][Full Text] [Related]
14. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures. Sun Q; Xu Y; Gao Z; Zhou H; Zhang Q; Xu R; Zhang C; Yao H; Liu M Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457994 [TBL] [Abstract][Full Text] [Related]
15. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M; Brolo AG Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709 [TBL] [Abstract][Full Text] [Related]
16. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Ren W; Zhu C; Wang E Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096 [TBL] [Abstract][Full Text] [Related]
17. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering. Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155 [TBL] [Abstract][Full Text] [Related]
18. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related]
19. Morphology-Controlled Fabrication of Large-Scale Dendritic Silver Nanostructures for Catalysis and SERS Applications. Cheng ZQ; Li ZW; Xu JH; Yao R; Li ZL; Liang S; Cheng GL; Zhou YH; Luo X; Zhong J Nanoscale Res Lett; 2019 Mar; 14(1):89. PubMed ID: 30868364 [TBL] [Abstract][Full Text] [Related]
20. Precisely Controllable Core-Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions. Jin J; Zhu S; Song Y; Zhao H; Zhang Z; Guo Y; Li J; Song W; Yang B; Zhao B ACS Appl Mater Interfaces; 2016 Oct; 8(41):27956-27965. PubMed ID: 27673572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]