BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28342408)

  • 1. Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics.
    Xu M; Yang J; Lieberman I; Haddas R
    Comput Biol Med; 2017 May; 84():53-58. PubMed ID: 28342408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads.
    Li XF; Liu ZD; Dai LY; Zhong GB; Zang WP
    Spine (Phila Pa 1976); 2011 Apr; 36(7):521-8. PubMed ID: 21079543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodynamic responses of adolescent idiopathic scoliosis exposed to vibration.
    Jia S; Lin L; Yang H; Xie J; Liu Z; Zhang T; Fan J; Han L
    Med Biol Eng Comput; 2023 Jan; 61(1):271-284. PubMed ID: 36385615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Low Bone Mineral Status on Biomechanical Characteristics in Idiopathic Scoliotic Spinal Deformity.
    Song XX; Jin LY; Li XF; Qian L; Shen HX; Liu ZD; Yu BW
    World Neurosurg; 2018 Feb; 110():e321-e329. PubMed ID: 29133001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of the rib cage on the static and dynamic stability responses of the scoliotic spine.
    Jia S; Lin L; Yang H; Fan J; Zhang S; Han L
    Sci Rep; 2020 Oct; 10(1):16916. PubMed ID: 33037307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of rib cage on the dynamic response stability of the scoliotic spine].
    Yang H; Lin L; Zhang S; Tian T; Li Y; Han L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):769-776. PubMed ID: 31631625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element method-based study for spinal vibration characteristics of the scoliosis and kyphosis lumbar spine to whole-body vibration under a compressive follower preload.
    Li P; Fu R; Yang X; Wang K; Chen H
    Comput Methods Biomech Biomed Engin; 2024 Mar; ():1-10. PubMed ID: 38532635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study.
    Fan W; Guo LX
    Comput Biol Med; 2017 Jul; 86():75-81. PubMed ID: 28511121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the natural frequencies of different degrees of degenerated human lumbar segments L2-L3 using dynamic finite element analysis.
    Fan R; Liu J; Liu J
    Comput Methods Programs Biomed; 2021 Sep; 209():106352. PubMed ID: 34419755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis.
    Wang L; Zhang B; Chen S; Lu X; Li ZY; Guo Q
    World Neurosurg; 2016 Nov; 95():126-133. PubMed ID: 27521732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalised mechanical properties of scoliotic vertebrae determined in vivo using tomodensitometry.
    Périé D; Hobatho MC; Baunin C; Sales De Gauzy J
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):161-5. PubMed ID: 12186725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of vibration-related spinal loads by numerical simulation.
    Pankoke S; Hofmann J; Wölfel HP
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S45-56. PubMed ID: 11275342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization method for 3D bracing correction of scoliosis using a finite element model.
    Gignac D; Aubin CE; Dansereau J; Labelle H
    Eur Spine J; 2000 Jun; 9(3):185-90. PubMed ID: 10905434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis.
    Karimi MT; Ebrahimi MH; Mohammadi A; McGarry A
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):231-236. PubMed ID: 27896687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical modeling of posterior instrumentation of the scoliotic spine.
    Aubin CE; Petit Y; Stokes IA; Poulin F; Gardner-Morse M; Labelle H
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):27-32. PubMed ID: 12623435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence prediction of tissue injury on frequency variations of the lumbar spine under vibration.
    Guo LX; Zhang M; Li JL; Zhang YM; Wang ZW; Teo EC
    OMICS; 2009 Dec; 13(6):521-6. PubMed ID: 19780682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of the scoliotic spine under different loading conditions.
    Cheng FH; Shih SL; Chou WK; Liu CL; Sung WH; Chen CS
    Biomed Mater Eng; 2010; 20(5):251-9. PubMed ID: 21084737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element investigation on the dynamic mechanical properties of low-frequency vibrations on human L2-L3 spinal motion segments with different degrees of degeneration.
    Fan R; Liu J; Liu J
    Med Biol Eng Comput; 2020 Dec; 58(12):3003-3016. PubMed ID: 33064234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.