BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28342687)

  • 1. Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill.
    Yukseler H; Uzal N; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Environ Manage; 2017 Dec; 203(Pt 3):1118-1125. PubMed ID: 28342687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adoption of European Union's IPPC Directive to a textile mill: analysis of water and energy consumption.
    Kocabas AM; Yukseler H; Dilek FB; Yetis U
    J Environ Manage; 2009 Oct; 91(1):102-13. PubMed ID: 19683854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the best available wastewater management techniques for a textile mill: cost and benefit analysis.
    Dogan B; Kerestecioglu M; Yetis U
    Water Sci Technol; 2010; 61(4):963-70. PubMed ID: 20182075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical treatment of textile wastewaters: statistical characterization, colour and sulfide removal.
    Pala A
    Indian J Environ Health; 2001 Jul; 43(3):128-34. PubMed ID: 12395514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-plant control applications and their effect on treatability of a textile mill wastewater.
    Dulkadiroglu H; Eremektar G; Dogruel S; Uner H; Germirli-Babuna F; Orhon D
    Water Sci Technol; 2002; 45(12):287-95. PubMed ID: 12201114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility analysis of in-plant control for water minimization and wastewater reuse in a wool finishing textile mill.
    Erdogan AO; Orhon HF; Dulkadiroglu H; Dogruel S; Eremektar G; Germirli Babuna F; Orhon D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(7):1819-32. PubMed ID: 15242129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabric dyeing wastewater treatment and salt recovery using a pilot scale system consisted of graphite electrodes based on electrooxidation and nanofiltration.
    Yildirim R; Eskikaya O; Keskinler B; Karagunduz A; Dizge N; Balakrishnan D
    Environ Res; 2023 Oct; 234():116283. PubMed ID: 37286123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of coagulation-flocculation on a COD-based molecular size distribution for a textile finishing mill effluent.
    Uner H; Dogruel S; Arslan-Alaton I; Babuna FG; Orhon D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1899-908. PubMed ID: 16849134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green textile production: a chemical minimization and substitution study in a woolen fabric production.
    Ozturk E; Cinperi NC; Kitis M
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45358-45373. PubMed ID: 32789806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry.
    Ben Amar N; Kechaou N; Palmeri J; Deratani A; Sghaier A
    J Hazard Mater; 2009 Oct; 170(1):111-7. PubMed ID: 19497667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozone treatment of textile wastewaters for reuse.
    Ciardelli G; Capannelli G; Bottino A
    Water Sci Technol; 2001; 44(5):61-7. PubMed ID: 11695484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of different textile fibers on characterization of dyeing wastewater and final effluent.
    Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C
    Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater.
    Sahinkaya E; Sahin A; Yurtsever A; Kitis M
    J Environ Manage; 2018 Sep; 222():420-427. PubMed ID: 29894945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reuse of textile wastewater for dyeing cotton knitted fabric with hybrid treatment: Coagulation/sand filtration/UF/NF-RO.
    Ćurić I; Dolar D; Bošnjak J
    J Environ Manage; 2021 Oct; 295():113133. PubMed ID: 34182340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency.
    Zaharia C; Suteu D
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):2226-35. PubMed ID: 22814960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical oxidation of textile wastewater and its reuse.
    Mohan N; Balasubramanian N; Basha CA
    J Hazard Mater; 2007 Aug; 147(1-2):644-51. PubMed ID: 17336454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Permeate Recovery for Concentrate Reduction by Integrated Membrane Process in Textile Effluent.
    Sudhakar M; Vijayalakshmi P; Nilavunesan D; Thiruvengadaravi KV; Baskaralingam P; Sivanesan S
    Water Environ Res; 2016; 88(9):838-846. PubMed ID: 27654082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.
    Han G; Liang CZ; Chung TS; Weber M; Staudt C; Maletzko C
    Water Res; 2016 Mar; 91():361-70. PubMed ID: 26820358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The color removal and fate of organic pollutants in a pilot-scale MBR-NF combined process treating textile wastewater with high water recovery.
    Li K; Jiang C; Wang J; Wei Y
    Water Sci Technol; 2016; 73(6):1426-33. PubMed ID: 27003085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADMI color and toxicity reductions in raw textile mill effluent and dye mixtures by TiO
    Mounteer AH; Arcanjo GS; Coimbra ECL; da Silva LMM
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4260-4265. PubMed ID: 30069777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.