These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28342922)

  • 1. Smartphones and Programmable Shunts: Are These Indispensable Phones Safe and Smart?
    Ozturk S; Cakin H; Kurtuldu H; Kocak O; Erol FS; Kaplan M
    World Neurosurg; 2017 Jun; 102():518-525. PubMed ID: 28342922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable shunts and headphones: Are they safe together?
    Spader HS; Ratanaprasatporn L; Morrison JF; Grossberg JA; Cosgrove GR
    J Neurosurg Pediatr; 2015 Oct; 16(4):402-5. PubMed ID: 26149436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable shunt valve interactions with osseointegrated hearing devices.
    J Neurosurg Pediatr; 2017 Apr; 19(4):384-390. PubMed ID: 28186475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between programmable shunt valves and the iPad 3 with Smart Cover.
    He Y; Murphy RK; Roland JL; Limbrick DD
    Childs Nerv Syst; 2013 Apr; 29(4):531-3. PubMed ID: 23423659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.
    Wong ST; Wen E; Fong D
    J Neurosurg Pediatr; 2013 Aug; 12(2):160-5. PubMed ID: 23705870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between programmable shunt valves and magnetically controlled growing rods for scoliosis.
    Larrew T; Alshareef M; Murphy RF; Eskandari R; Kosnik Infinger L
    J Neurosurg Pediatr; 2020 Dec; 26(6):667-670. PubMed ID: 33007746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves].
    Nakashima K; Oishi A; Itokawa H; Fujimoto M
    No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field interactions in adjustable hydrocephalus shunts.
    Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves.
    Nomura S; Fujisawa H; Suzuki M
    Surg Neurol; 2005 May; 63(5):467-8. PubMed ID: 15883076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of structural degradation of cerebrospinal fluid shunt valves performed using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Sgouros S; Dipple SJ
    J Neurosurg; 2004 Mar; 100(3):534-40. PubMed ID: 15035291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical evaluation of shunt implantations using Sophy programmable pressure valves: comparison with Codman-Hakim programmable valves.
    Katano H; Karasawa K; Sugiyama N; Yamashita N; Ohkura A; Kamiya K
    J Clin Neurosci; 2003 Sep; 10(5):557-61. PubMed ID: 12948459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study.
    Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH
    PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.
    Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H
    Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of smartphone-integrated magnetometers in detection of safe electromagnetic devices for use near programmable shunt valves: a proof-of-concept study.
    Patel SK; Zamorano-Fernández J; McCoy C; Skoch J
    J Neurosurg Pediatr; 2021 Jun; 27(6):629-636. PubMed ID: 33770756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An In Vitro Study of Magnetic Field Interference with an Electronic Shunt Programmer.
    Pajer HB; Carlson AP; Botros JA; Spader HS
    World Neurosurg; 2022 Oct; 166():e568-e571. PubMed ID: 35868507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.