BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2834319)

  • 1. Uptake of fatty acids by Mycoplasma capricolum.
    Dahl J
    J Bacteriol; 1988 May; 170(5):2022-6. PubMed ID: 2834319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in composition, biosynthesis, and physical state of membrane lipids occurring upon aging of Mycoplasma hominis cultures.
    Rottem S; Greenberg AS
    J Bacteriol; 1975 Feb; 121(2):631-9. PubMed ID: 234420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cholesterol on macromolecular synthesis and fatty acid uptake by Mycoplasma capricolum.
    Dahl JS; Dahl CE; Bloch K
    J Biol Chem; 1981 Jan; 256(1):87-91. PubMed ID: 7451451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipids as acyl donors to membrane proteins of Mycoplasma capricolum.
    Dahl CE; Dahl JS
    J Biol Chem; 1984 Sep; 259(17):10771-6. PubMed ID: 6547954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cholesterol and lanosterol on the structure and dynamics of the cell membrane of Mycoplasma capricolum. Deuterium nuclear magnetic resonance study.
    Huang TH; DeSiervo AJ; Yang QX
    Biophys J; 1991 Mar; 59(3):691-702. PubMed ID: 2049526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cholesterol on phospholipid, RNA, and protein synthesis in Mycoplasma capricolum.
    Dahl JS; Dahl CE
    Isr J Med Sci; 1984 Sep; 20(9):807-11. PubMed ID: 6210267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of energization on membrane organization in mycoplasma.
    Le Grimellec C; Lajeunesse D; Rigaud JL
    Biochim Biophys Acta; 1982 May; 687(2):281-90. PubMed ID: 7093258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y.
    Van Demark PJ; Plackett P
    J Bacteriol; 1972 Aug; 111(2):454-8. PubMed ID: 5053467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ionophores and dicyclohexylcarbodiimide on Mycoplasma gallisepticum adherence to erythrocytes.
    Banai M; Razin S; Schuldiner S; Zilberstein D; Kahane I; Bredt W
    Infect Immun; 1982 Oct; 38(1):189-94. PubMed ID: 7141689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi.
    Fice D; Shen Z; Byers DM
    J Bacteriol; 1993 Apr; 175(7):1865-70. PubMed ID: 8384617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA.
    Igal RA; Wang P; Coleman RA
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):529-34. PubMed ID: 9182714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation into the mechanism of copper uptake by Mycoplasma gallisepticum in the presence of 2,9-dimethyl-1,10-phenanthroline.
    Gaisser HD; van der Goot H; Stouthamer AH; Timmerman H
    Pharm Weekbl Sci; 1987 Dec; 9(6):315-20. PubMed ID: 3432040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane lipids of Mycoplasma gallisepticum: a disaturated phosphatidylcholine and a phosphatidylglycerol with an unusual positional distribution of fatty acids.
    Rottem S; Markowitz O
    Biochemistry; 1979 Jul; 18(14):2930-5. PubMed ID: 465448
    [No Abstract]   [Full Text] [Related]  

  • 14. Expression, purification, and characterization of enzyme IIA(glc) of the phosphoenolpyruvate:sugar phosphotransferase system of Mycoplasma capricolum.
    Zhu PP; Nosworthy N; Ginsburg A; Miyata M; Seok YJ; Peterkofsky A
    Biochemistry; 1997 Jun; 36(23):6947-53. PubMed ID: 9188690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinate regulation of unsaturated phospholipid, RNA, and protein synthesis in Mycoplasma capricolum by cholesterol.
    Dahl JS; Dahl CE
    Proc Natl Acad Sci U S A; 1983 Feb; 80(3):692-6. PubMed ID: 6187002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the plasma membrane of Mycoplasma laidlawii. 8. Effect of temperature shift and antimetabolites on K + transport.
    Cho HW; Morowitz HJ
    Biochim Biophys Acta; 1972 Jul; 274(1):105-10. PubMed ID: 5044055
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphate distribution and transport in mycoplasma.
    Lajeunesse D; Le Grimellec C
    Can J Biochem Cell Biol; 1984 Nov; 62(11):1041-5. PubMed ID: 6084546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen uptake and H2O2 production by fermentative Mycoplasma spp.
    Miles RJ; Taylor RR; Varsani H
    J Med Microbiol; 1991 Apr; 34(4):219-23. PubMed ID: 1902263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small unilamellar vesicles are able to fuse with Mycoplasma capricolum cells.
    Salman M; Tarshis M; Rottem S
    Biochim Biophys Acta; 1991 Apr; 1063(2):209-16. PubMed ID: 1901498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol in mycoplasma membranes. Correlation of enzymic and transport activities with physical state of lipids in membranes of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentrations.
    Rottem S; Cirillo VP; de Kruyff B; Shinitzky M; Razin S
    Biochim Biophys Acta; 1973 Nov; 323(4):509-19. PubMed ID: 4357440
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.