These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28343685)
1. Evaluation of sources of irreproducibility of retention indices under programmed temperature gas chromatography conditions. Wu L; Cho IK; Li Y; Zhang G; Li QX J Chromatogr A; 2017 Apr; 1495():57-63. PubMed ID: 28343685 [TBL] [Abstract][Full Text] [Related]
2. Phenomenon of dual- and single-retention behaviors of solutes and its validation by computational simulation in linear programmed temperature gas chromatography. Wu L; Duan X; Liu C; Zhang G; Li QX J Sep Sci; 2016 Jul; 39(14):2785-95. PubMed ID: 27241084 [TBL] [Abstract][Full Text] [Related]
3. Retention models for programmed gas chromatography. Castello G; Moretti P; Vezzani S J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102 [TBL] [Abstract][Full Text] [Related]
4. Retention modeling and retention time prediction in gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: The contribution of pressure on solute partition. Burel A; Vaccaro M; Cartigny Y; Tisse S; Coquerel G; Cardinael P J Chromatogr A; 2017 Feb; 1485():101-119. PubMed ID: 28108081 [TBL] [Abstract][Full Text] [Related]
5. Determination of retention indices in constant inlet pressure mode and conversion among different column temperature conditions in comprehensive two-dimensional gas chromatography. Zhu S; Lu X; Qiu Y; Pang T; Kong H; Wu C; Xu G J Chromatogr A; 2007 May; 1150(1-2):28-36. PubMed ID: 17010352 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a structure-driven retention model for temperature-programmed gas chromatography. Nawas MI; Poole CF J Chromatogr A; 2004 Jan; 1023(1):113-21. PubMed ID: 14760855 [TBL] [Abstract][Full Text] [Related]
7. Retention indexes for temperature-programmed gas chromatography of polychlorinated biphenyls. Chu S; Hong CS Anal Chem; 2004 Sep; 76(18):5486-97. PubMed ID: 15362911 [TBL] [Abstract][Full Text] [Related]
8. High-speed gas chromatography: an overview of various concepts. Cramers CA; Janssen HG; van Deursen MM; Leclercq PA J Chromatogr A; 1999 Sep; 856(1-2):315-29. PubMed ID: 10526794 [TBL] [Abstract][Full Text] [Related]
9. Temperature dependence of Kováts indices in gas chromatography revisited. Héberger K; Görgényi M; Kowalska T J Chromatogr A; 2002 Oct; 973(1-2):135-42. PubMed ID: 12437171 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of the methylbenzenes and chlorobenzenes retention index to column temperature, stationary phase polarity, and-number and chemical nature of substituents. Pérez-Parajón JM; Santiuste JM; Takács JM J Chromatogr A; 2004 Sep; 1048(2):223-32. PubMed ID: 15481260 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the resolution of capillary columns in different conditions of inlet pressure and temperature. Vezzani S; Moretti P; Castello G; Travaini G J Chromatogr A; 2004 Feb; 1026(1-2):201-21. PubMed ID: 14763748 [TBL] [Abstract][Full Text] [Related]
12. Large-scale statistical study of the dependence of retention index on heating rate in temperature-programmed gas chromatography. Matyushin DD; Sholokhova AY J Chromatogr A; 2024 Sep; 1732():465223. PubMed ID: 39111182 [TBL] [Abstract][Full Text] [Related]
13. Contribution to linearly programmed temperature gas chromatography. Further application of the Van den Dool-Kratz equation, and a new utilization of the Sadtler retention index library. Santiuste JM; Tarján G; Ullrich E; Takács JM J Chromatogr A; 2008 Feb; 1181(1-2):103-15. PubMed ID: 18201710 [TBL] [Abstract][Full Text] [Related]
14. Elution parameters in constant-pressure, single-ramp temperature-programmed gas chromatography. Blumberg LM; Klee MS J Chromatogr A; 2001 May; 918(1):113-20. PubMed ID: 11403437 [TBL] [Abstract][Full Text] [Related]
15. Prediction of the plate height of capillary columns operated at any inlet pressure of the carrier gas by using few retention data measured under isobaric conditions. Vezzani S; Moretti P; Castello G J Chromatogr A; 2003 Apr; 994(1-2):103-25. PubMed ID: 12779223 [TBL] [Abstract][Full Text] [Related]
16. Application of gas-liquid chromatography to the analysis of essential oils. Part XVII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using capillary columns with non-polar stationary phases. Analytical methods committee. Analyst; 1997 Oct; 122(10):1167-74. PubMed ID: 9463975 [TBL] [Abstract][Full Text] [Related]
17. Separation of dialkyl sulfides by metallo-mesogenic stationary phases for complexation gas chromatography. Chen JL; Liu CY J Chromatogr A; 2007 Aug; 1161(1-2):269-74. PubMed ID: 17568598 [TBL] [Abstract][Full Text] [Related]
18. Prediction of retention times and efficiency in linear gradient programmed pressure analysis on capillary columns. Vezzani S; Moretti P; Castello G J Chromatogr A; 2004 Nov; 1055(1-2):141-50. PubMed ID: 15560490 [TBL] [Abstract][Full Text] [Related]
19. Gas chromatographic retention indices of fentanyl and analogues. Manral L; Kumar Gupta P; Ganesan K; Chandra Malhotra R J Chromatogr Sci; 2008 Jul; 46(6):551-5. PubMed ID: 18647479 [TBL] [Abstract][Full Text] [Related]
20. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester. Pojjanapornpun S; Aryusuk K; Lilitchan S; Krisnangkura K Anal Bioanal Chem; 2017 Apr; 409(11):2777-2789. PubMed ID: 28168549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]