BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28343687)

  • 1. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography.
    Hirsh AG; Tsonev LI
    J Chromatogr A; 2017 Apr; 1495():22-30. PubMed ID: 28343687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 3 - Scouting optimization strategies for separation of monoclonal antibodies by dual simultaneous independent gradients of pH & salt on a weak cation exchange stationary phase.
    Tsonev LI; Hirsh AG
    J Chromatogr A; 2024 Jun; 1730():465065. PubMed ID: 38879974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 1 - Large increases in isoform resolution of human transferrin by use of dual simultaneous independent gradients of pH & acetonitrile on a mixed bed (anion exchange plus reversed phase) stationary phase.
    Tsonev LI; Hirsh AG
    J Chromatogr A; 2016 Oct; 1468():173-182. PubMed ID: 27688175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.
    Tsonev LI; Hirsh AG
    J Chromatogr A; 2008 Jul; 1200(2):166-82. PubMed ID: 18554604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple, simultaneous, independent gradients for versatile multidimensional liquid chromatography. Part I: Theory.
    Hirsh AG; Tsonev LI
    J Chromatogr A; 2012 May; 1236():51-62. PubMed ID: 22440667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatographic assay to probe the binding energy and mechanisms of homologous proteins to surface-bound ligands.
    Reese HR; Shanahan CC; Lembo J; Tsonev L; Hirsh A; Menegatti S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jan; 1136():121927. PubMed ID: 31841976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: salt gradient approach.
    Fekete S; Beck A; Fekete J; Guillarme D
    J Pharm Biomed Anal; 2015 Jan; 102():33-44. PubMed ID: 25240157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated ion exchange chromatography screening combined with in silico multifactorial simulation for efficient method development and purification of biopharmaceutical targets.
    Losacco GL; Hicks MB; DaSilva JO; Wang H; Potapenko M; Tsay FR; Ahmad IAH; Mangion I; Guillarme D; Regalado EL
    Anal Bioanal Chem; 2022 May; 414(12):3581-3591. PubMed ID: 35441858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic interpolation method predicts protein chromatographic elution with salt gradients, pH gradients and combined salt/pH gradients.
    Creasy A; Barker G; Carta G
    Biotechnol J; 2017 Mar; 12(3):. PubMed ID: 27992113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: Alternative mobile phases and fine tuning of the separation.
    Farsang E; Murisier A; Horváth K; Beck A; Kormány R; Guillarme D; Fekete S
    J Pharm Biomed Anal; 2019 May; 168():138-147. PubMed ID: 30807918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of pH-related parameters in ion-exchange chromatography using pH-gradient operations.
    Ahamed T; Chilamkurthi S; Nfor BK; Verhaert PD; van Dedem GW; van der Wielen LA; Eppink MH; van de Sandt EJ; Ottens M
    J Chromatogr A; 2008 Jun; 1194(1):22-9. PubMed ID: 18154981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein separation using a novel silica-based RPLC/IEC mixed-mode stationary phase modified with N-methylimidazolium ionic liquid.
    Bai Q; Liu Y; Wang Y; Zhao K; Yang F; Liu J; Shen J; Zhao Q
    Talanta; 2018 Aug; 185():89-97. PubMed ID: 29759254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.
    Zhao K; Yang L; Wang X; Bai Q; Yang F; Wang F
    Talanta; 2012 Aug; 98():86-94. PubMed ID: 22939132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups.
    Pabst TM; Antos D; Carta G; Ramasubramanyan N; Hunter AK
    J Chromatogr A; 2008 Feb; 1181(1-2):83-94. PubMed ID: 18194806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradient chromatofocusing. versatile pH gradient separation of proteins in ion-exchange HPLC: characterization studies.
    Shan L; Anderson DJ
    Anal Chem; 2002 Nov; 74(21):5641-9. PubMed ID: 12433100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.
    Kröner F; Hubbuch J
    J Chromatogr A; 2013 Apr; 1285():78-87. PubMed ID: 23489486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry.
    Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R
    J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC-MS.
    Zhu MZ; Li N; Wang YT; Liu N; Guo MQ; Sun BQ; Zhou H; Liu L; Wu JL
    J Proteome Res; 2017 Sep; 16(9):3470-3475. PubMed ID: 28753293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatography of proteins on hydrophobic interaction and ion-exchange chromatographic matrices: mobile phase contributions to selectivity.
    Heinitz ML; Kennedy L; Kopaciewicz W; Regnier FE
    J Chromatogr; 1988 Jun; 443():173-82. PubMed ID: 3170685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.